論文の概要: Quantifying the Echo Chamber Effect: An Embedding Distance-based
Approach
- arxiv url: http://arxiv.org/abs/2307.04668v1
- Date: Mon, 10 Jul 2023 16:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 12:33:10.643082
- Title: Quantifying the Echo Chamber Effect: An Embedding Distance-based
Approach
- Title(参考訳): エコーチャンバー効果の定量化 : 埋め込み距離に基づくアプローチ
- Authors: Faisal Alatawi and Paras Sheth and Huan Liu
- Abstract要約: 本稿では,Echo Chamber Score(ECS)について紹介する。
ユーザ間の距離測定を容易にするために,自己教師付きグラフオートエンコーダを用いたユーザ埋め込みモデルであるEchoGAEを提案する。
本研究は、エコーチャンバーの定量化とオンライン談話のダイナミックスに光を流すツールとしてのECSの有効性を示す。
- 参考スコア(独自算出の注目度): 28.715087124800565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of social media platforms has facilitated the formation of echo
chambers, which are online spaces where users predominantly encounter
viewpoints that reinforce their existing beliefs while excluding dissenting
perspectives. This phenomenon significantly hinders information dissemination
across communities and fuels societal polarization. Therefore, it is crucial to
develop methods for quantifying echo chambers. In this paper, we present the
Echo Chamber Score (ECS), a novel metric that assesses the cohesion and
separation of user communities by measuring distances between users in the
embedding space. In contrast to existing approaches, ECS is able to function
without labels for user ideologies and makes no assumptions about the structure
of the interaction graph. To facilitate measuring distances between users, we
propose EchoGAE, a self-supervised graph autoencoder-based user embedding model
that leverages users' posts and the interaction graph to embed them in a manner
that reflects their ideological similarity. To assess the effectiveness of ECS,
we use a Twitter dataset consisting of four topics - two polarizing and two
non-polarizing. Our results showcase ECS's effectiveness as a tool for
quantifying echo chambers and shedding light on the dynamics of online
discourse.
- Abstract(参考訳): ソーシャルメディアプラットフォームが台頭し、エコーチャンバーの形成が促進された。これはユーザーが既存の信念を補強する視点に主に遭遇するオンライン空間である。
この現象は、コミュニティ間の情報の拡散を著しく妨げ、社会的な分極を引き起こす。
そのため,エコーチャンバーの定量化手法の開発が重要である。
本稿では,埋め込み空間におけるユーザ間の距離を測定することで,ユーザコミュニティの凝集と分離を評価する新しい指標であるEcho Chamber Score(ECS)を提案する。
既存のアプローチとは対照的に、ECSはユーザーイデオロギーのラベルなしで機能し、相互作用グラフの構造について仮定することができない。
ユーザ間の距離測定を容易にするために,ユーザ投稿とインタラクショングラフを利用して,そのイデオロギー的類似性を反映した自己教師付きグラフオートエンコーダに基づくユーザ埋め込みモデルであるEchoGAEを提案する。
ECSの有効性を評価するために、私たちは4つのトピックからなるTwitterデータセットを使用します。
本研究は、エコーチャンバーの定量化とオンライン談話のダイナミックスに光を流すツールとしてのECSの有効性を示す。
関連論文リスト
- Decoding Echo Chambers: LLM-Powered Simulations Revealing Polarization in Social Networks [12.812531689189065]
ソーシャルメディアがエコーチャンバーなどの重要な問題に与える影響に対処する必要がある。
伝統的な研究はしばしば感情的な傾向や意見の進化を数字や公式に単純化する。
偏光現象の評価と対策を行うために, LLM を用いた社会意見ネットワークのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-09-28T12:49:02Z) - Towards Scalable Topic Detection on Web via Simulating Levy Walks Nature of Topics in Similarity Space [55.97416108140739]
類似性空間におけるLevi Walk自然をシミュレートすることで,グループトピックに対する新しい,しかし非常に強力なExplore-Exploit(EE)アプローチを提案する。
2つの公開データセットの実験により、我々の手法は、有効性の観点からは最先端の手法に匹敵するだけでなく、効率面では最先端の手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2024-07-26T07:19:46Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
本稿では,声帯からの感情認識のための連鎖回帰モデルに基づく階層的枠組みを提案する。
データスパシティの課題に対処するため、レイヤワイドおよび時間アグリゲーションモジュールを備えた自己教師付き学習(SSL)表現も使用しています。
提案されたシステムは、ACII Affective Vocal Burst (A-VB) Challenge 2022に参加し、「TWO」および「CULTURE」タスクで第1位となった。
論文 参考訳(メタデータ) (2023-03-14T16:08:45Z) - Cascade-based Echo Chamber Detection [16.35164446890934]
ソーシャルメディアのエコーチャンバーは かなり精査されています
本稿では,ソーシャルメディアのフットプリントを説明する確率的生成モデルを提案する。
本研究では,姿勢検出や将来の伝搬予測などの補助的予測タスクにおいて,モデルが精度を向上させる方法を示す。
論文 参考訳(メタデータ) (2022-08-09T09:30:38Z) - The drivers of online polarization: fitting models to data [0.0]
エコーチャンバー効果と意見偏光は、情報消費における人間のバイアスや、フィードアルゴリズムによって生成されるパーソナライズされたレコメンデーションなど、いくつかの要因によって引き起こされる可能性がある。
これまでは主に意見力学モデルを用いて、分極とエコーチャンバーの出現の背後にあるメカニズムを探索してきた。
シミュレーションから得られた意見分布とソーシャルメディア上で測定した意見分布を数値的に比較する手法を提案する。
論文 参考訳(メタデータ) (2022-05-31T17:00:41Z) - A Survey on Echo Chambers on Social Media: Description, Detection and
Mitigation [13.299893581687702]
ソーシャルメディア上のエコーチャンバーは、多くのネガティブな結果をもたらす重要な問題である。
我々は、エコーチャンバーの形成に繋がるアルゴリズムと心理学の両方のメカニズムを示す。
論文 参考訳(メタデータ) (2021-12-09T18:20:25Z) - Unsupervised Belief Representation Learning in Polarized Networks with
Information-Theoretic Variational Graph Auto-Encoders [26.640917190618612]
偏極ネットワークにおける信念表現学習のための教師なしアルゴリズムを開発した。
ユーザとコンテンツアイテム(例えば、ユーザビューを表す投稿)の両方を、適切に区切られた潜在空間に投影することを学ぶ。
ユーザとコンテンツの潜在表現は、イデオロギー的傾きを定量化し、問題に対する姿勢を検出し、予測するために使用することができる。
論文 参考訳(メタデータ) (2021-10-01T04:35:01Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。