Action-State Dependent Dynamic Model Selection
- URL: http://arxiv.org/abs/2307.04754v2
- Date: Mon, 9 Oct 2023 14:01:42 GMT
- Title: Action-State Dependent Dynamic Model Selection
- Authors: Francesco Cordoni and Alessio Sancetta
- Abstract summary: A Reinforcement learning algorithm is used to approximate and estimate from the data the optimal solution to a dynamic programming problem.
A typical example is the one of switching between different portfolio models under rebalancing costs.
Using a set of macroeconomic variables and price data, an empirical application shows superior performance to choosing the best portfolio model with hindsight.
- Score: 6.5268245109828005
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A model among many may only be best under certain states of the world.
Switching from a model to another can also be costly. Finding a procedure to
dynamically choose a model in these circumstances requires to solve a complex
estimation procedure and a dynamic programming problem. A Reinforcement
learning algorithm is used to approximate and estimate from the data the
optimal solution to this dynamic programming problem. The algorithm is shown to
consistently estimate the optimal policy that may choose different models based
on a set of covariates. A typical example is the one of switching between
different portfolio models under rebalancing costs, using macroeconomic
information. Using a set of macroeconomic variables and price data, an
empirical application to the aforementioned portfolio problem shows superior
performance to choosing the best portfolio model with hindsight.
Related papers
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Modeling Choice via Self-Attention [8.394221523847325]
We show that our attention-based choice model is a low-optimal generalization of the Halo Multinomial Logit (Halo-MNL) model.
We also establish the first realistic-scale benchmark for choice estimation on real data, conducting an evaluation of existing models.
arXiv Detail & Related papers (2023-11-11T11:13:07Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - A Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization
Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-box
Design Problems [0.0]
In existing work, a weighted Tchebycheff MOBO approach has been demonstrated which attempts to estimate the unknown utopia in formulating acquisition function.
We propose a nested weighted Tchebycheff MOBO framework where we build a regression model selection procedure from an ensemble of models.
arXiv Detail & Related papers (2021-10-16T00:44:06Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Personalizing Performance Regression Models to Black-Box Optimization
Problems [0.755972004983746]
In this work, we propose a personalized regression approach for numerical optimization problems.
We also investigate the impact of selecting not a single regression model per problem, but personalized ensembles.
We test our approach on predicting the performance of numerical optimizations on the BBOB benchmark collection.
arXiv Detail & Related papers (2021-04-22T11:47:47Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Variational Model-based Policy Optimization [34.80171122943031]
Model-based reinforcement learning (RL) algorithms allow us to combine model-generated data with those collected from interaction with the real system in order to alleviate the data efficiency problem in RL.
We propose an objective function as a variational lower-bound of a log-likelihood of a log-likelihood to jointly learn and improve model and policy.
Our experiments on a number of continuous control tasks show that despite being more complex, our model-based (E-step) algorithm, called emactoral model-based policy optimization (VMBPO), is more sample-efficient and
arXiv Detail & Related papers (2020-06-09T18:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.