Sample Complexity of Robust Reinforcement Learning with a Generative
Model
- URL: http://arxiv.org/abs/2112.01506v2
- Date: Fri, 3 Dec 2021 03:43:59 GMT
- Title: Sample Complexity of Robust Reinforcement Learning with a Generative
Model
- Authors: Kishan Panaganti and Dileep Kalathil
- Abstract summary: We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Robust Markov Decision Process (RMDP) framework focuses on designing
control policies that are robust against the parameter uncertainties due to the
mismatches between the simulator model and real-world settings. An RMDP problem
is typically formulated as a max-min problem, where the objective is to find
the policy that maximizes the value function for the worst possible model that
lies in an uncertainty set around a nominal model. The standard robust dynamic
programming approach requires the knowledge of the nominal model for computing
the optimal robust policy. In this work, we propose a model-based reinforcement
learning (RL) algorithm for learning an $\epsilon$-optimal robust policy when
the nominal model is unknown. We consider three different forms of uncertainty
sets, characterized by the total variation distance, chi-square divergence, and
KL divergence. For each of these uncertainty sets, we give a precise
characterization of the sample complexity of our proposed algorithm. In
addition to the sample complexity results, we also present a formal analytical
argument on the benefit of using robust policies. Finally, we demonstrate the
performance of our algorithm on two benchmark problems.
Related papers
- Correct-by-Construction Control for Stochastic and Uncertain Dynamical
Models via Formal Abstractions [44.99833362998488]
We develop an abstraction framework that can be used to solve this problem under various modeling assumptions.
We use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees for satisfying the given specification.
We then show that, by construction, we can refine this policy into a feedback controller for which these guarantees carry over to the dynamical model.
arXiv Detail & Related papers (2023-11-16T11:03:54Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model [61.87673435273466]
This paper investigates model robustness in reinforcement learning (RL) to reduce the sim-to-real gap in practice.
We adopt the framework of distributionally robust Markov decision processes (RMDPs), aimed at learning a policy that optimize the worst-case performance when the deployed environment falls within a prescribed uncertainty set around the nominal MDP.
arXiv Detail & Related papers (2023-05-26T02:32:03Z) - Model-Free Robust Average-Reward Reinforcement Learning [25.125481838479256]
We focus on the robust average-reward MDPs under the model-free iteration setting.
We design two model-free algorithms, robust relative value (RVI) TD and robust RVI Q-learning, and theoretically prove their convergence to the optimal solution.
arXiv Detail & Related papers (2023-05-17T18:19:23Z) - Robust Entropy-regularized Markov Decision Processes [23.719568076996662]
We study a robust version of the ER-MDP model, where the optimal policies are required to be robust.
We show that essential properties that hold for the non-robust ER-MDP and robust unregularized MDP models also hold in our settings.
We show how our framework and results can be integrated into different algorithmic schemes including value or (modified) policy.
arXiv Detail & Related papers (2021-12-31T09:50:46Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Learning with Safety Constraints: Sample Complexity of Reinforcement
Learning for Constrained MDPs [13.922754427601491]
We characterize the relationship between safety constraints and the number of samples needed to ensure a desired level of accuracy.
Our main finding is that compared to the best known bounds of the unconstrained regime, the sample of constrained RL algorithms are increased by a factor that is logarithmic in the number of constraints.
arXiv Detail & Related papers (2020-08-01T18:17:08Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
arXiv Detail & Related papers (2020-06-20T16:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.