論文の概要: Digital Twins for Patient Care via Knowledge Graphs and Closed-Form
Continuous-Time Liquid Neural Networks
- arxiv url: http://arxiv.org/abs/2307.04772v1
- Date: Sat, 8 Jul 2023 12:52:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 17:29:25.877424
- Title: Digital Twins for Patient Care via Knowledge Graphs and Closed-Form
Continuous-Time Liquid Neural Networks
- Title(参考訳): 知識グラフと閉鎖型連続時間液体ニューラルネットワークを用いた患者ケア用ディジタル双極子
- Authors: Logan Nye
- Abstract要約: デジタル双生児は、製造業、サプライチェーンのロジスティクス、土木インフラなどの産業で急速に勢いを増している。
マルチモーダル患者データを用いた複雑な疾患のモデル化の課題と、その解析の複雑さは、生体医療分野におけるデジタル双生児の採用を阻害している。
本稿では,計算コストとモデリング複雑さによる臨床双対モデリングの障壁に対処する新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital twin technology has is anticipated to transform healthcare, enabling
personalized medicines and support, earlier diagnoses, simulated treatment
outcomes, and optimized surgical plans. Digital twins are readily gaining
traction in industries like manufacturing, supply chain logistics, and civil
infrastructure. Not in patient care, however. The challenge of modeling complex
diseases with multimodal patient data and the computational complexities of
analyzing it have stifled digital twin adoption in the biomedical vertical.
Yet, these major obstacles can potentially be handled by approaching these
models in a different way. This paper proposes a novel framework for addressing
the barriers to clinical twin modeling created by computational costs and
modeling complexities. We propose structuring patient health data as a
knowledge graph and using closed-form continuous-time liquid neural networks,
for real-time analytics. By synthesizing multimodal patient data and leveraging
the flexibility and efficiency of closed form continuous time networks and
knowledge graph ontologies, our approach enables real time insights,
personalized medicine, early diagnosis and intervention, and optimal surgical
planning. This novel approach provides a comprehensive and adaptable view of
patient health along with real-time analytics, paving the way for digital twin
simulations and other anticipated benefits in healthcare.
- Abstract(参考訳): デジタルツイン技術は医療を変革し、パーソナライズされた医療とサポート、早期診断、シミュレートされた治療結果、最適化された手術計画を可能にしている。
デジタル双子は、製造業、サプライチェーンのロジスティクス、民間インフラなどの業界で、容易に注目を集めている。
ただし、患者のケアは行わない。
マルチモーダル患者データを用いた複雑な疾患のモデル化の課題と、その解析の複雑さは、生体医療分野におけるデジタル双生児の採用を阻害している。
しかし、これらの大きな障害は、異なる方法でこれらのモデルにアプローチすることで対処できる可能性がある。
本稿では,計算コストとモデリング複雑さによる臨床双対モデリングの障壁に対処する新しい枠組みを提案する。
本稿では,患者健康データをナレッジグラフとして構造化し,クローズドフォームな連続時間液体ニューラルネットワークを用いてリアルタイム分析を行う。
マルチモーダル患者データを合成し, 閉鎖型連続時間ネットワークと知識グラフオントロジーの柔軟性と効率を活用することにより, リアルタイムの洞察, パーソナライズド医療, 早期診断と介入, 最適な手術計画を可能にした。
この新しいアプローチは、患者の健康の包括的で適応可能なビューと、リアルタイム分析を提供し、デジタルツインシミュレーションやその他の医療における期待される利益の道を開く。
関連論文リスト
- Digital Twin Generators for Disease Modeling [2.341540989979203]
患者のデジタルツイン(英: Digital twin)とは、患者の健康状態の経時変化を記述する計算モデルである。
デジタル双生児は、人間の健康の個々のレベルのコンピュータシミュレーションを可能にすることによって、医療に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-05-02T17:23:04Z) - From Noise to Signal: Unveiling Treatment Effects from Digital Health
Data through Pharmacology-Informed Neural-SDE [0.0]
デジタルヘルス技術(DHT)は、患者をパーソナライズし、継続的に、リアルタイムにモニタリングする。
これらの技術から洞察を得るには、臨床に関連のある疾患状態の変化を捉えるための適切なモデリング技術が必要である。
本稿では,これらの課題に対処可能な新しい薬理インフォームド・ニューラル微分方程式(SDE)モデルを提案する。
論文 参考訳(メタデータ) (2024-03-05T19:13:57Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - A digital twin framework for civil engineering structures [0.6249768559720122]
デジタルツインの概念は、条件ベースの予測保守パラダイムを前進させる魅力的な機会である。
本研究は, 土木構造物の健康モニタリング, 保守, 管理計画に対する予測的ディジタルツインアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-02T21:38:36Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
本稿では,異なる種類の情報を組み合わせて臨床データの時間的側面を考慮した患者軌跡のモデル化手法を提案する。
本手法は, 予期せぬ患者寛解と疾患進行の2つの異なる臨床結果に基づいて検討した。
論文 参考訳(メタデータ) (2022-09-09T10:20:54Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Graph representation forecasting of patient's medical conditions:
towards a digital twin [0.0]
複数組織におけるACE2過剰発現が心血管機能に及ぼす影響について検討した。
本稿では,分子データを用いた大規模な構成可能な臨床モデルの統合という概念の実証を行う。
論文 参考訳(メタデータ) (2020-09-17T13:49:48Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。