論文の概要: Entity Identifier: A Natural Text Parsing-based Framework For Entity
Relation Extraction
- arxiv url: http://arxiv.org/abs/2307.04892v1
- Date: Mon, 10 Jul 2023 20:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 17:01:00.755392
- Title: Entity Identifier: A Natural Text Parsing-based Framework For Entity
Relation Extraction
- Title(参考訳): Entity Identifier: エンティティ関係抽出のための自然言語解析ベースのフレームワーク
- Authors: El Mehdi Chouham, Jessica L\'opez Espejel, Mahaman Sanoussi Yahaya
Alassan, Walid Dahhane, El Hassane Ettifouri
- Abstract要約: 自然言語処理技術を用いて,要求記述から構造化情報を抽出する。
このプロセスを容易にするために,エンティティと関係情報を抽出するパイプラインを導入する。
また、我々のアプローチの有効性を評価するデータセットも作成します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The field of programming has a diversity of paradigms that are used according
to the working framework. While current neural code generation methods are able
to learn and generate code directly from text, we believe that this approach is
not optimal for certain code tasks, particularly the generation of classes in
an object-oriented project. Specifically, we use natural language processing
techniques to extract structured information from requirements descriptions, in
order to automate the generation of CRUD (Create, Read, Update, Delete) class
code. To facilitate this process, we introduce a pipeline for extracting entity
and relation information, as well as a representation called an "Entity Tree"
to model this information. We also create a dataset to evaluate the
effectiveness of our approach.
- Abstract(参考訳): プログラミングの分野には、作業フレームワークに従って使用されるパラダイムの多様性があります。
現在のニューラルコード生成手法は、テキストから直接コードを学び、生成することができるが、このアプローチは特定のコードタスク、特にオブジェクト指向プロジェクトにおけるクラスの生成に最適ではないと考えている。
具体的には、自然言語処理技術を用いて要求記述から構造化情報を抽出し、CRUD(Create, Read, Update, Delete)クラスコードの生成を自動化する。
このプロセスを容易にするために、エンティティと関係情報を抽出するパイプラインと、この情報をモデル化するための"エンティティツリー"と呼ばれる表現を導入する。
また、我々のアプローチの有効性を評価するデータセットも作成します。
関連論文リスト
- Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Informed Named Entity Recognition Decoding for Generative Language
Models [3.5323691899538128]
Informed Named Entity Recognition Decoding (iNERD) を提案する。
8つの名前付きエンティティ認識データセット上で5つの生成言語モデルを評価し、優れた結果を得るため、統合されたエンティティコーパス上でモデルを粗いチューニングを行い、その性能を向上させる。
論文 参考訳(メタデータ) (2023-08-15T14:16:29Z) - Efficient Guided Generation for Large Language Models [0.21485350418225244]
本稿では, 有限状態マシンの状態間の遷移の観点から, ニューラルテキスト生成の問題を構成的に再構成する方法を示す。
このフレームワークは、正規表現と文脈自由文法でテキスト生成を導くための効率的なアプローチをもたらす。
論文 参考訳(メタデータ) (2023-07-19T01:14:49Z) - A Comprehensive Review of State-of-The-Art Methods for Java Code
Generation from Natural Language Text [0.0]
本稿では,Javaコード生成タスクにおけるディープラーニングモデルの進化と進展を概観する。
我々は,最も重要な手法に焦点を合わせ,そのメリットと限界,およびコミュニティが使用する目的的機能を示す。
論文 参考訳(メタデータ) (2023-06-10T07:27:51Z) - CodeKGC: Code Language Model for Generative Knowledge Graph Construction [46.220237225553234]
コードのような構造化データに基づいて訓練された大規模な生成言語モデルは、構造予測や推論タスクのために自然言語を理解する素晴らしい能力を示してきた。
知識グラフ内の意味構造を効果的に活用するスキーマ対応プロンプトを開発した。
実験結果から,提案手法はベースラインと比較してベンチマークデータセットの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2023-04-18T15:12:34Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z) - Contrastive Learning for Source Code with Structural and Functional
Properties [66.10710134948478]
本稿では,ソースコードの特徴に基づいて事前学習に焦点を当てた,新たな自己教師型モデルBOOSTを提案する。
私たちは、機能的に等価なコードを生成する自動化された構造誘導型コード変換アルゴリズムを採用しています。
私たちは、対照的な学習目標を通じて、機能的に等価なコードをより近く、異なるコードに近づける方法で、モデルをトレーニングします。
論文 参考訳(メタデータ) (2021-10-08T02:56:43Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
本稿では,コード固有の構造を考慮したプログラミング言語の事前学習モデルであるGraphCodeBERTを提案する。
これは変数間の"where-the-value-comes-from"の関係をエンコードするコードのセマンティックレベルの構造です。
コード検索,クローン検出,コード翻訳,コード改良の4つのタスクにおいて,本モデルを評価する。
論文 参考訳(メタデータ) (2020-09-17T15:25:56Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。