論文の概要: Epidemic Modeling with Generative Agents
- arxiv url: http://arxiv.org/abs/2307.04986v1
- Date: Tue, 11 Jul 2023 02:52:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 16:31:57.517458
- Title: Epidemic Modeling with Generative Agents
- Title(参考訳): 発生因子を用いた流行モデル
- Authors: Ross Williams, Niyousha Hosseinichimeh, Aritra Majumdar, Navid
Ghaffarzadegan
- Abstract要約: 本研究は、ヒトの行動を疫病モデルに組み込むという大きな課題に対処するために、個人レベルのモデリングの新しいパラダイムを提供する。
エージェントベースの疫病モデルで生成的人工知能を使用することで、各エージェントは独自の推論と決定を行う権限を持つ。
- 参考スコア(独自算出の注目度): 1.1342625695057285
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study offers a new paradigm of individual-level modeling to address the
grand challenge of incorporating human behavior in epidemic models. Using
generative artificial intelligence in an agent-based epidemic model, each agent
is empowered to make its own reasonings and decisions via connecting to a large
language model such as ChatGPT. Through various simulation experiments, we
present compelling evidence that generative agents mimic real-world behaviors
such as quarantining when sick and self-isolation when cases rise.
Collectively, the agents demonstrate patterns akin to multiple waves observed
in recent pandemics followed by an endemic period. Moreover, the agents
successfully flatten the epidemic curve. This study creates potential to
improve dynamic system modeling by offering a way to represent human brain,
reasoning, and decision making.
- Abstract(参考訳): 本研究は、ヒトの行動を疫病モデルに組み込むという大きな課題に対処するために、個人レベルのモデリングの新しいパラダイムを提供する。
エージェントベースの流行モデルで生成人工知能を使用することで、各エージェントはChatGPTのような大きな言語モデルに接続することで、独自の推論と決定を行うことができる。
様々なシミュレーション実験を通じて, 発生剤が病気時の隔離や症例発生時の自己同化といった現実世界の行動を模倣する証拠を提示する。
近年のパンデミックで観察された複数の波に類似したパターンを総合的に示す。
さらに,感染拡大曲線の平坦化にも成功している。
この研究は、人間の脳、推論、意思決定を表現する方法を提供することで、動的システムモデリングを改善する可能性がある。
関連論文リスト
- Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
多段階多地域流行予測のための新しいハイブリッドモデルMepoGNNを提案する。
本モデルでは, 確認症例数だけでなく, 疫学的パラメータも明示的に学習できる。
論文 参考訳(メタデータ) (2023-06-26T17:09:43Z) - Imitating Human Behaviour with Diffusion Models [25.55215280101109]
拡散モデルはテキスト・ツー・イメージ領域において強力な生成モデルとして出現している。
本稿では, 連続した環境下での人間の行動を模倣する観察行動モデルとしての利用について検討する。
論文 参考訳(メタデータ) (2023-01-25T16:31:05Z) - Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference [0.6524460254566905]
深部シーケンス・ツー・シークエンス(seq2seq)モデルは,複雑な流行モデルに対する正確なサロゲートとして機能することを示す。
トレーニングが完了すると、サロゲートはオリジナルのモデルよりも数千倍高速なシナリオを予測できます。
論文 参考訳(メタデータ) (2022-09-20T11:23:19Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Multi-scale simulation of COVID-19 epidemics [0.0]
新型コロナウイルスの感染拡大が始まってから1年以上が経過している。
今後数週間にわたって広がる未来と、潜在的な政治的介入の影響を正確に予測することは難しい」と述べた。
現在の流行モデルは主に2つのアプローチに該当する: 分割モデル、人口を疫学クラスに分け、微分方程式の数学的解決に依存する。
論文 参考訳(メタデータ) (2021-12-02T12:34:11Z) - An Agent-Based Model of COVID-19 Diffusion to Plan and Evaluate
Intervention Policies [0.09236074230806579]
このモデルはイタリアのピエモンテの構造データを含んでいる。
このモデルは、エージェントの行動と相互作用の結果から生じる複雑な伝染病のダイナミクスの生成である。
論文 参考訳(メタデータ) (2021-08-19T19:23:17Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。