論文の概要: Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
- arxiv url: http://arxiv.org/abs/2209.09617v1
- Date: Tue, 20 Sep 2022 11:23:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 17:24:06.981414
- Title: Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
- Title(参考訳): ベイズ推論をファシリテートするためのエピデミックモデルのSeq2Seqサロゲート
- Authors: Giovanni Charles, Timothy M. Wolock, Peter Winskill, Azra Ghani, Samir
Bhatt, Seth Flaxman
- Abstract要約: 深部シーケンス・ツー・シークエンス(seq2seq)モデルは,複雑な流行モデルに対する正確なサロゲートとして機能することを示す。
トレーニングが完了すると、サロゲートはオリジナルのモデルよりも数千倍高速なシナリオを予測できます。
- 参考スコア(独自算出の注目度): 0.6524460254566905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epidemic models are powerful tools in understanding infectious disease.
However, as they increase in size and complexity, they can quickly become
computationally intractable. Recent progress in modelling methodology has shown
that surrogate models can be used to emulate complex epidemic models with a
high-dimensional parameter space. We show that deep sequence-to-sequence
(seq2seq) models can serve as accurate surrogates for complex epidemic models
with sequence based model parameters, effectively replicating seasonal and
long-term transmission dynamics. Once trained, our surrogate can predict
scenarios a several thousand times faster than the original model, making them
ideal for policy exploration. We demonstrate that replacing a traditional
epidemic model with a learned simulator facilitates robust Bayesian inference.
- Abstract(参考訳): 疫学モデルは伝染病を理解する強力なツールである。
しかし、サイズや複雑さが大きくなると、すぐに計算が難しくなる。
近年のモデリング手法の進歩により、サロゲートモデルは高次元パラメータ空間で複雑な流行モデルをエミュレートすることができることが示されている。
seq2seq(deep sequence-to-sequence)モデルが,時系列モデルパラメータを持つ複雑な流行モデルに対する正確なサロゲートとして機能し,季節と長期の伝達ダイナミクスを効果的に再現できることを示す。
訓練を済ませば、サロゲートはオリジナルのモデルよりも数千倍早くシナリオを予測できるので、政策調査に最適です。
従来の疫病モデルを学習シミュレータに置き換えることで、ベイズ推論が堅牢になることを示す。
関連論文リスト
- Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response [41.94295877935867]
我々は、空間的かつ人口統計学的に解決された伝染病モデルを構築し、パンデミックの初期段階を表すデータセットのためのグラフニューラルネットワークを訓練する。
提案手法は、オンザフライ実行の可能性をもたらし、低バリアWebアプリケーションにおける病気のダイナミクスモデルの統合をもたらす。
論文 参考訳(メタデータ) (2024-11-10T15:54:09Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - Fine-Tuning Generative Models as an Inference Method for Robotic Tasks [18.745665662647912]
ロボット作業における観察にニューラルネットワークモデルのサンプル生成を迅速に適応させる方法について検討する。
鍵となるアイデアは、観測された証拠と一致する生成サンプルにそれを適合させることで、モデルを素早く微調整することである。
本手法は自己回帰モデルと変分自己エンコーダの両方に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-10-19T16:11:49Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
我々は,時間変化パラメータと時間不変パラメータの両方を復元できるベイズ推論のシミュレーションに基づくディープラーニング手法を開発した。
この結果から,ディープラーニングアプローチは時間的ダイナミクスを捉える上で極めて効率的であることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T17:42:53Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
新型コロナウイルスのパンデミックは、感染モデルに対する強固な理解の必要性を強調している。
本稿では2つのアプローチをブリッジする単純な混合モデルを提案する。
モデルは非機械的であるが、ネットワーク化されたSIRフレームワークに基づくプロセスの自然な結果として現れることを示す。
論文 参考訳(メタデータ) (2022-01-07T19:42:05Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Discrepancies in Epidemiological Modeling of Aggregated Heterogeneous
Data [1.433758865948252]
本研究では, 複雑なシステムに直面すると, 伝染率などの疫学パラメータを推定するための最先端モデルが不適切であることを示す。
複数の流行から発生した入射曲線を組み合わせることで、複雑な発生シナリオを3つ生成する。
このベイズ推定フレームワークにおける2つのデータ生成モデルを評価する。
論文 参考訳(メタデータ) (2021-06-20T03:41:19Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。