Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation
- URL: http://arxiv.org/abs/2307.04988v3
- Date: Sun, 30 Jul 2023 07:11:44 GMT
- Title: Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation
- Authors: Chris Chinenye Emezue, Alexandre Drouin, Tristan Deleu, Stefan Bauer,
Yoshua Bengio
- Abstract summary: A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
- Score: 137.3520153445413
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The practical utility of causality in decision-making is widespread and
brought about by the intertwining of causal discovery and causal inference.
Nevertheless, a notable gap exists in the evaluation of causal discovery
methods, where insufficient emphasis is placed on downstream inference. To
address this gap, we evaluate seven established baseline causal discovery
methods including a newly proposed method based on GFlowNets, on the downstream
task of treatment effect estimation. Through the implementation of a
distribution-level evaluation, we offer valuable and unique insights into the
efficacy of these causal discovery methods for treatment effect estimation,
considering both synthetic and real-world scenarios, as well as low-data
scenarios. The results of our study demonstrate that some of the algorithms
studied are able to effectively capture a wide range of useful and diverse ATE
modes, while some tend to learn many low-probability modes which impacts the
(unrelaxed) recall and precision.
Related papers
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Bayesian Intervention Optimization for Causal Discovery [23.51328013481865]
Causal discovery is crucial for understanding complex systems and informing decisions.
Current methods, such as Bayesian and graph-theoretical approaches, do not prioritize decision-making.
We propose a novel Bayesian optimization-based method inspired by Bayes factors.
arXiv Detail & Related papers (2024-06-16T12:45:44Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Valid Inference After Causal Discovery [73.87055989355737]
We develop tools for valid post-causal-discovery inference.
We show that a naive combination of causal discovery and subsequent inference algorithms leads to highly inflated miscoverage rates.
arXiv Detail & Related papers (2022-08-11T17:40:45Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Stochastic Intervention for Causal Effect Estimation [7.015556609676951]
We propose a new propensity score and intervention effect estimator (SIE) to estimate intervention effect.
We also design a customized genetic algorithm specific to intervention effect (Ge-SIO) with the aim of providing causal evidence for decision making.
Our proposed measures and algorithms can achieve a significant performance lift in comparison with state-of-the-art baselines.
arXiv Detail & Related papers (2021-05-27T01:12:03Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
We frame this challenge as a problem of feature acquisition of confounding features for causal inference.
Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation.
arXiv Detail & Related papers (2020-11-17T16:28:43Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.