Stochastic Intervention for Causal Effect Estimation
- URL: http://arxiv.org/abs/2105.12898v1
- Date: Thu, 27 May 2021 01:12:03 GMT
- Title: Stochastic Intervention for Causal Effect Estimation
- Authors: Tri Dung Duong, Qian Li, Guandong Xu
- Abstract summary: We propose a new propensity score and intervention effect estimator (SIE) to estimate intervention effect.
We also design a customized genetic algorithm specific to intervention effect (Ge-SIO) with the aim of providing causal evidence for decision making.
Our proposed measures and algorithms can achieve a significant performance lift in comparison with state-of-the-art baselines.
- Score: 7.015556609676951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal inference methods are widely applied in various decision-making
domains such as precision medicine, optimal policy and economics. Central to
these applications is the treatment effect estimation of intervention
strategies. Current estimation methods are mostly restricted to the
deterministic treatment, which however, is unable to address the stochastic
space treatment policies. Moreover, previous methods can only make binary
yes-or-no decisions based on the treatment effect, lacking the capability of
providing fine-grained effect estimation degree to explain the process of
decision making. In our study, we therefore advance the causal inference
research to estimate stochastic intervention effect by devising a new
stochastic propensity score and stochastic intervention effect estimator (SIE).
Meanwhile, we design a customized genetic algorithm specific to stochastic
intervention effect (Ge-SIO) with the aim of providing causal evidence for
decision making. We provide the theoretical analysis and conduct an empirical
study to justify that our proposed measures and algorithms can achieve a
significant performance lift in comparison with state-of-the-art baselines.
Related papers
- Are causal effect estimations enough for optimal recommendations under multitreatment scenarios? [2.4578723416255754]
It is essential to include a causal effect estimation analysis to compare potential outcomes under different treatments or controls.
We propose a comprehensive methodology for multitreatment selection.
arXiv Detail & Related papers (2024-10-07T16:37:35Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - Causal Inference under Data Restrictions [0.0]
This dissertation focuses on modern causal inference under uncertainty and data restrictions.
It includes applications to neoadjuvant clinical trials, distributed data networks, and robust individualized decision making.
arXiv Detail & Related papers (2023-01-20T20:14:32Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Stochastic Intervention for Causal Inference via Reinforcement Learning [7.015556609676951]
Central to causal inference is the treatment effect estimation of intervention strategies.
Existing methods are mostly restricted to the deterministic treatment and compare outcomes under different treatments.
We propose a new effective framework to estimate the treatment effect on intervention.
arXiv Detail & Related papers (2021-05-28T00:11:22Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.