On the Complexity of Finite-Sum Smooth Optimization under the
Polyak-{\L}ojasiewicz Condition
- URL: http://arxiv.org/abs/2402.02569v1
- Date: Sun, 4 Feb 2024 17:14:53 GMT
- Title: On the Complexity of Finite-Sum Smooth Optimization under the
Polyak-{\L}ojasiewicz Condition
- Authors: Yunyan Bai, Yuxing Liu, Luo Luo
- Abstract summary: This paper considers the optimization problem of the form $min_bf xinmathbb Rd f(bf x)triangleq frac1nsum_i=1n f_i(bf x)$, where $f(cdot)$ satisfies the Polyak--Lojasiewicz (PL) condition with parameter $mu$ and $f_i(cdot)_i=1n$ is $L$-mean-squared smooth.
- Score: 14.781921087738967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the optimization problem of the form $\min_{{\bf
x}\in{\mathbb R}^d} f({\bf x})\triangleq \frac{1}{n}\sum_{i=1}^n f_i({\bf x})$,
where $f(\cdot)$ satisfies the Polyak--{\L}ojasiewicz (PL) condition with
parameter $\mu$ and $\{f_i(\cdot)\}_{i=1}^n$ is $L$-mean-squared smooth. We
show that any gradient method requires at least
$\Omega(n+\kappa\sqrt{n}\log(1/\epsilon))$ incremental first-order oracle (IFO)
calls to find an $\epsilon$-suboptimal solution, where $\kappa\triangleq L/\mu$
is the condition number of the problem. This result nearly matches upper bounds
of IFO complexity for best-known first-order methods. We also study the problem
of minimizing the PL function in the distributed setting such that the
individuals $f_1(\cdot),\dots,f_n(\cdot)$ are located on a connected network of
$n$ agents. We provide lower bounds of
$\Omega(\kappa/\sqrt{\gamma}\,\log(1/\epsilon))$,
$\Omega((\kappa+\tau\kappa/\sqrt{\gamma}\,)\log(1/\epsilon))$ and
$\Omega\big(n+\kappa\sqrt{n}\log(1/\epsilon)\big)$ for communication rounds,
time cost and local first-order oracle calls respectively, where
$\gamma\in(0,1]$ is the spectral gap of the mixing matrix associated with the
network and~$\tau>0$ is the time cost of per communication round. Furthermore,
we propose a decentralized first-order method that nearly matches above lower
bounds in expectation.
Related papers
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
We propose variance- optimistic sliding (SVOGS) method, which takes the advantage of the finite-sum structure in the objective.
We prove $mathcal O(delta D2/varepsilon)$, communication complexity of $mathcal O(n+sqrtndelta D2/varepsilon)$, and local calls of $tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$.
arXiv Detail & Related papers (2024-05-25T08:34:49Z) - Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
Decentralized online convex optimization (D-OCO) aims to minimize a sequence of global loss functions using only local computations and communications.
We develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions.
Our algorithms are nearly optimal in terms of $T$, $n$, and $rho$.
arXiv Detail & Related papers (2024-02-14T13:44:16Z) - Faster Stochastic Algorithms for Minimax Optimization under
Polyak--{\L}ojasiewicz Conditions [12.459354707528819]
We propose SPIDER-GDA for solving the finite-sum problem of the form $min_x max_y f(x,y)triqangle frac1n sum_i=1n f_i(x,y)$.
We prove SPIDER-GDA could find an $epsilon$-optimal solution within $mathcal Oleft((n + sqrtn,kappa_xkappa_y2)log (1/epsilon)
arXiv Detail & Related papers (2023-07-29T02:26:31Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
arXiv Detail & Related papers (2022-02-01T16:06:20Z) - Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced
Convex-Concave Minimax Optimization [41.432757205864796]
This paper considers first-order algorithms for convex-con minimax problems of the form $min_bf xmax_yf(bfbf y) simultaneously.
Our methods can be used to solve more general unbalanced minimax problems and are also near optimal.
arXiv Detail & Related papers (2021-06-03T11:30:32Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.