論文の概要: Supervised Attention Using Homophily in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2307.05217v1
- Date: Tue, 11 Jul 2023 12:43:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 15:05:54.343626
- Title: Supervised Attention Using Homophily in Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおけるホモフィリーを用いた監視注意
- Authors: Michail Chatzianastasis, Giannis Nikolentzos, Michalis Vazirgiannis
- Abstract要約: そこで本研究では,クラスラベルを共有するノード間の注目度を高めるための新しい手法を提案する。
提案手法をいくつかのノード分類データセット上で評価し,標準ベースラインモデルよりも高い性能を示す。
- 参考スコア(独自算出の注目度): 26.77596449192451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks have become the standard approach for dealing with
learning problems on graphs. Among the different variants of graph neural
networks, graph attention networks (GATs) have been applied with great success
to different tasks. In the GAT model, each node assigns an importance score to
its neighbors using an attention mechanism. However, similar to other graph
neural networks, GATs aggregate messages from nodes that belong to different
classes, and therefore produce node representations that are not well separated
with respect to the different classes, which might hurt their performance. In
this work, to alleviate this problem, we propose a new technique that can be
incorporated into any graph attention model to encourage higher attention
scores between nodes that share the same class label. We evaluate the proposed
method on several node classification datasets demonstrating increased
performance over standard baseline models.
- Abstract(参考訳): グラフニューラルネットワークは、グラフ上の学習問題を扱う標準的なアプローチとなっている。
グラフニューラルネットワークのさまざまなバリエーションの中で、グラフアテンションネットワーク(GAT)は様々なタスクに大きく成功している。
GATモデルでは、各ノードはアテンションメカニズムを使用して、隣人に重要なスコアを割り当てる。
しかし、他のグラフニューラルネットワークと同様に、GATは異なるクラスに属するノードからのメッセージを集約するため、異なるクラスに対して十分に分離されていないノード表現を生成し、パフォーマンスを損なう可能性がある。
そこで本研究では,この問題を解決するために,同じクラスラベルを共有するノード間の注意スコアを高めるために,任意のグラフ注意度モデルに組み込むことができる新しい手法を提案する。
提案手法を,標準ベースラインモデルよりも高い性能を示すノード分類データセット上で評価した。
関連論文リスト
- Neighbor Overlay-Induced Graph Attention Network [5.792501481702088]
グラフニューラルネットワーク(GNN)は、グラフデータを表現できることから、大きな注目を集めている。
本研究は、次の2つのアイデアを持つ、隣接するオーバーレイ誘発グラフアテンションネットワーク(NO-GAT)を提案する。
グラフベンチマークデータセットに関する実証研究は、提案されたNO-GATが最先端モデルより一貫して優れていることを示している。
論文 参考訳(メタデータ) (2024-08-16T15:01:28Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
グラフニューラルネットワーク(GNN)は,ノード分類などのグラフベースの学習タスクの新興技術である。
本研究では,ノードラベルの不均衡に対するGNNの脆弱性を明らかにする。
本稿では,2つのモジュールからなるカリキュラム学習(GNN-CL)を備えたグラフニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-05T10:46:11Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Graph Decoupling Attention Markov Networks for Semi-supervised Graph
Node Classification [38.52231889960877]
グラフニューラルネットワーク(GNN)は、ノード分類などのグラフ学習タスクにおいてユビキタスである。
本稿では,グラフノードのラベル依存を考察し,ハードとソフトの両方の注意を学ぶための分離注意機構を提案する。
論文 参考訳(メタデータ) (2021-04-28T11:44:13Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCNはグラフ学習に適したノード機能である。
エンドツーエンドでCatGCNを訓練し、半教師付きノード分類でそれを実証する。
論文 参考訳(メタデータ) (2020-09-11T09:25:17Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。