論文の概要: Neighbor Overlay-Induced Graph Attention Network
- arxiv url: http://arxiv.org/abs/2408.08788v1
- Date: Fri, 16 Aug 2024 15:01:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:03:59.356003
- Title: Neighbor Overlay-Induced Graph Attention Network
- Title(参考訳): Neighbor Overlay-induced Graph Attention Network
- Authors: Tiqiao Wei, Ye Yuan,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフデータを表現できることから、大きな注目を集めている。
本研究は、次の2つのアイデアを持つ、隣接するオーバーレイ誘発グラフアテンションネットワーク(NO-GAT)を提案する。
グラフベンチマークデータセットに関する実証研究は、提案されたNO-GATが最先端モデルより一貫して優れていることを示している。
- 参考スコア(独自算出の注目度): 5.792501481702088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have garnered significant attention due to their ability to represent graph data. Among various GNN variants, graph attention network (GAT) stands out since it is able to dynamically learn the importance of different nodes. However, present GATs heavily rely on the smoothed node features to obtain the attention coefficients rather than graph structural information, which fails to provide crucial contextual cues for node representations. To address this issue, this study proposes a neighbor overlay-induced graph attention network (NO-GAT) with the following two-fold ideas: a) learning favorable structural information, i.e., overlaid neighbors, outside the node feature propagation process from an adjacency matrix; b) injecting the information of overlaid neighbors into the node feature propagation process to compute the attention coefficient jointly. Empirical studies on graph benchmark datasets indicate that the proposed NO-GAT consistently outperforms state-of-the-art models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフデータを表現できることから、大きな注目を集めている。
GNNの様々な変種の中で、異なるノードの重要性を動的に学習できるため、グラフアテンションネットワーク(GAT)は際立っている。
しかし、現在のGATは、グラフ構造情報よりも注意係数を得るためにスムーズなノード特徴に強く依存しており、ノード表現にとって重要な文脈的手がかりを提供していない。
この問題に対処するために,本研究では,次の2つの考え方を持つ隣接オーバレイ誘発グラフアテンションネットワーク(NO-GAT)を提案する。
a) 隣接行列からのノード特徴伝播プロセスの外にある、有利な構造情報、すなわち、隣人のオーバーレイド
ロ 隣人の情報をノード特徴伝播プロセスに注入して、注意係数を共同計算すること。
グラフベンチマークデータセットに関する実証研究は、提案されたNO-GATが最先端モデルより一貫して優れていることを示している。
関連論文リスト
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - Supervised Attention Using Homophily in Graph Neural Networks [26.77596449192451]
そこで本研究では,クラスラベルを共有するノード間の注目度を高めるための新しい手法を提案する。
提案手法をいくつかのノード分類データセット上で評価し,標準ベースラインモデルよりも高い性能を示す。
論文 参考訳(メタデータ) (2023-07-11T12:43:23Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
階層型推論グラフネットワークの学習による顔の親和性検証の問題点について検討する。
より強力で柔軟なキャパシティを利用するために,星型推論グラフネットワーク(S-RGN)を開発した。
また、より強力で柔軟なキャパシティを利用する階層型推論グラフネットワーク(H-RGN)も開発しています。
論文 参考訳(メタデータ) (2021-09-06T03:16:56Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。