AdaptiveRec: Adaptively Construct Pairs for Contrastive Learning in
Sequential Recommendation
- URL: http://arxiv.org/abs/2307.05469v1
- Date: Fri, 7 Jul 2023 06:48:58 GMT
- Title: AdaptiveRec: Adaptively Construct Pairs for Contrastive Learning in
Sequential Recommendation
- Authors: Jaeheyoung Jeon, Jung Hyun Ryu, Jewoong Cho, Myungjoo Kang
- Abstract summary: This paper presents a solution to the challenges faced by contrastive learning in sequential recommendation systems.
It addresses the issue of false negative, which limits the effectiveness of recommendation algorithms.
- Score: 0.7883397954991659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a solution to the challenges faced by contrastive
learning in sequential recommendation systems. In particular, it addresses the
issue of false negative, which limits the effectiveness of recommendation
algorithms. By introducing an advanced approach to contrastive learning, the
proposed method improves the quality of item embeddings and mitigates the
problem of falsely categorizing similar instances as dissimilar. Experimental
results demonstrate performance enhancements compared to existing systems. The
flexibility and applicability of the proposed approach across various
recommendation scenarios further highlight its value in enhancing sequential
recommendation systems.
Related papers
- End-to-End Learnable Item Tokenization for Generative Recommendation [51.82768744368208]
We propose ETEGRec, a novel End-To-End Generative Recommender by seamlessly integrating item tokenization and generative recommendation.
Our framework is developed based on the dual encoder-decoder architecture, which consists of an item tokenizer and a generative recommender.
arXiv Detail & Related papers (2024-09-09T12:11:53Z) - Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method [60.364834418531366]
We propose five new evaluation metrics that comprehensively and accurately assess the performance of RRS.
We formulate the RRS from a causal perspective, formulating recommendations as bilateral interventions.
We introduce a reranking strategy to maximize matching outcomes, as measured by the proposed metrics.
arXiv Detail & Related papers (2024-08-19T07:21:02Z) - A General Offline Reinforcement Learning Framework for Interactive
Recommendation [43.47849328010646]
We first introduce a probabilistic generative model for interactive recommendation, and then propose an effective inference algorithm for discrete and policy learning based on logged feedbacks.
We conduct extensive experiments on two public real-world datasets, demonstrating that the proposed methods can achieve superior performance over existing supervised learning and reinforcement learning methods for recommendation.
arXiv Detail & Related papers (2023-10-01T14:09:21Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - GHRS: Graph-based Hybrid Recommendation System with Application to Movie
Recommendation [0.0]
We propose a recommender system method using a graph-based model associated with the similarity of users' ratings.
By utilizing the advantages of Autoencoder feature extraction, we extract new features based on all combined attributes.
The experimental results on the MovieLens dataset show that the proposed algorithm outperforms many existing recommendation algorithms on recommendation accuracy.
arXiv Detail & Related papers (2021-11-06T10:47:45Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
This paper proposes a deep reinforcement learning based recommendation system by utilizing Actor-Critic architecture.
The proposed model is able to generate a diverse while relevance recommendation list based on the user's preferences.
arXiv Detail & Related papers (2021-10-28T13:11:29Z) - Recommendation Fairness: From Static to Dynamic [12.080824433982993]
We discuss how fairness could be baked into reinforcement learning techniques for recommendation.
We argue that in order to make further progress in recommendation fairness, we may want to consider multi-agent (game-theoretic) optimization, multi-objective (Pareto) optimization.
arXiv Detail & Related papers (2021-09-05T21:38:05Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.