Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method
- URL: http://arxiv.org/abs/2408.09748v1
- Date: Mon, 19 Aug 2024 07:21:02 GMT
- Title: Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method
- Authors: Chen Yang, Sunhao Dai, Yupeng Hou, Wayne Xin Zhao, Jun Xu, Yang Song, Hengshu Zhu,
- Abstract summary: We propose five new evaluation metrics that comprehensively and accurately assess the performance of RRS.
We formulate the RRS from a causal perspective, formulating recommendations as bilateral interventions.
We introduce a reranking strategy to maximize matching outcomes, as measured by the proposed metrics.
- Score: 60.364834418531366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reciprocal recommender systems~(RRS), conducting bilateral recommendations between two involved parties, have gained increasing attention for enhancing matching efficiency. However, the majority of existing methods in the literature still reuse conventional ranking metrics to separately assess the performance on each side of the recommendation process. These methods overlook the fact that the ranking outcomes of both sides collectively influence the effectiveness of the RRS, neglecting the necessity of a more holistic evaluation and a capable systemic solution. In this paper, we systemically revisit the task of reciprocal recommendation, by introducing the new metrics, formulation, and method. Firstly, we propose five new evaluation metrics that comprehensively and accurately assess the performance of RRS from three distinct perspectives: overall coverage, bilateral stability, and balanced ranking. These metrics provide a more holistic understanding of the system's effectiveness and enable a comprehensive evaluation. Furthermore, we formulate the RRS from a causal perspective, formulating recommendations as bilateral interventions, which can better model the decoupled effects of potential influencing factors. By utilizing the potential outcome framework, we further develop a model-agnostic causal reciprocal recommendation method that considers the causal effects of recommendations. Additionally, we introduce a reranking strategy to maximize matching outcomes, as measured by the proposed metrics. Extensive experiments on two real-world datasets from recruitment and dating scenarios demonstrate the effectiveness of our proposed metrics and approach. The code and dataset are available at: https://github.com/RUCAIBox/CRRS.
Related papers
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - Behavior Alignment: A New Perspective of Evaluating LLM-based Conversational Recommender Systems [1.652907918484303]
Large Language Models (LLMs) have demonstrated great potential in Conversational Recommender Systems (CRS)
LLMs often appear inflexible and passive, frequently rushing to complete the recommendation task without sufficient inquiry.
This behavior discrepancy can lead to decreased accuracy in recommendations and lower user satisfaction.
arXiv Detail & Related papers (2024-04-17T21:56:27Z) - Towards a Theoretical Understanding of Two-Stage Recommender Systems [0.5439020425819]
Production-grade recommender systems rely heavily on a large-scale corpus used by online media services, including Netflix, Pinterest, and Amazon.
We study the behaviors of the two-stage recommender that entail a strong convergence to the optimal recommender system.
We show numerically that the two-stage recommender enables encapsulating the impacts of items' and users' attributes on ratings.
arXiv Detail & Related papers (2024-02-23T21:11:55Z) - A Comprehensive Survey of Evaluation Techniques for Recommendation
Systems [0.0]
This paper introduces a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance.
We identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics.
arXiv Detail & Related papers (2023-12-26T11:57:01Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
We show how to return a set of items rigorously guaranteed to contain mostly good items.
Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate.
We evaluate our methods on the Yahoo! Learning to Rank and MSMarco datasets.
arXiv Detail & Related papers (2022-07-04T17:49:25Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Adversarial Counterfactual Learning and Evaluation for Recommender
System [33.44276155380476]
We show in theory that applying supervised learning to detect user preferences may end up with inconsistent results in the absence of exposure information.
We propose a principled solution by introducing a minimax empirical risk formulation.
arXiv Detail & Related papers (2020-11-08T00:40:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.