論文の概要: A Causal Ordering Prior for Unsupervised Representation Learning
- arxiv url: http://arxiv.org/abs/2307.05704v1
- Date: Tue, 11 Jul 2023 18:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 15:28:45.671545
- Title: A Causal Ordering Prior for Unsupervised Representation Learning
- Title(参考訳): 教師なし表現学習のための因果順序付け
- Authors: Avinash Kori, Pedro Sanchez, Konstantinos Vilouras, Ben Glocker,
Sotirios A. Tsaftaris
- Abstract要約: 因果表現学習(Causal representation learning)は、データセットの変動の要因は、実際には因果関係にあると主張している。
本稿では,遅延付加雑音モデルを用いたデータ生成過程を考慮した,教師なし表現学習手法を提案する。
- 参考スコア(独自算出の注目度): 27.18951912984905
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unsupervised representation learning with variational inference relies
heavily on independence assumptions over latent variables. Causal
representation learning (CRL), however, argues that factors of variation in a
dataset are, in fact, causally related. Allowing latent variables to be
correlated, as a consequence of causal relationships, is more realistic and
generalisable. So far, provably identifiable methods rely on: auxiliary
information, weak labels, and interventional or even counterfactual data.
Inspired by causal discovery with functional causal models, we propose a fully
unsupervised representation learning method that considers a data generation
process with a latent additive noise model (ANM). We encourage the latent space
to follow a causal ordering via loss function based on the Hessian of the
latent distribution.
- Abstract(参考訳): 変分推論を用いた教師なし表現学習は、潜在変数に対する独立性仮定に大きく依存する。
しかし、因果表現学習(crl)は、データセットにおける変動の要因は、実際には因果関係にあると主張する。
因果関係の結果、潜在変数を相関させることはより現実的で一般化可能である。
現時点では、証明可能なメソッドは、補助情報、弱いラベル、介入的データ、さらには偽りのデータに依存する。
機能的因果モデルによる因果発見に着想を得て,潜在付加雑音モデル(ANM)を用いたデータ生成過程を考慮した,教師なし表現学習手法を提案する。
我々は,潜在分布のヘッシアンに基づく損失関数による因果順序を潜在空間に従わせることを推奨する。
関連論文リスト
- Identifiability Guarantees for Causal Disentanglement from Purely Observational Data [10.482728002416348]
因果解離は、データの背後にある潜在因果関係について学ぶことを目的としている。
近年の進歩は、(単一の)潜伏因子への介入が可能であると仮定して、識別可能性(identifiability)が確立されている。
非線形因果モデルで同定できる潜伏因子の高精度な評価法を提案する。
論文 参考訳(メタデータ) (2024-10-31T04:18:29Z) - A Sparsity Principle for Partially Observable Causal Representation Learning [28.25303444099773]
因果表現学習は、知覚データから高レベルの因果変数を特定することを目的としている。
我々は、インスタンスに依存した部分的可観測パターンを持つデータセットから、未確認の観測から学ぶことに集中する。
提案手法は,推定された表現の間隔を小さくすることで,基礎となる因果変数を推定する2つの手法である。
論文 参考訳(メタデータ) (2024-03-13T08:40:49Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Towards Causal Representation Learning and Deconfounding from Indefinite
Data [17.793702165499298]
非統計データ(画像、テキストなど)は、従来の因果データとプロパティやメソッドの点で重大な対立に遭遇する。
2つの新しい視点から因果データを再定義し、3つのデータパラダイムを提案する。
非定値データから因果表現を学習するための動的変分推論モデルとして,上記の設計を実装した。
論文 参考訳(メタデータ) (2023-05-04T08:20:37Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。