論文の概要: Identifying Weight-Variant Latent Causal Models
- arxiv url: http://arxiv.org/abs/2208.14153v6
- Date: Mon, 2 Sep 2024 12:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 23:05:43.510893
- Title: Identifying Weight-Variant Latent Causal Models
- Title(参考訳): 重量変動潜在因果モデルの同定
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi,
- Abstract要約: 推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
- 参考スコア(独自算出の注目度): 82.14087963690561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of causal representation learning aims to uncover latent higher-level causal representations that affect lower-level observations. Identifying true latent causal representations from observed data, while allowing instantaneous causal relations among latent variables, remains a challenge, however. To this end, we start from the analysis of three intrinsic properties in identifying latent space from observations: transitivity, permutation indeterminacy, and scaling indeterminacy. We find that transitivity acts as a key role in impeding the identifiability of latent causal representations. To address the unidentifiable issue due to transitivity, we introduce a novel identifiability condition where the underlying latent causal model satisfies a linear-Gaussian model, in which the causal coefficients and the distribution of Gaussian noise are modulated by an additional observed variable. Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling. Furthermore, based on this theoretical result, we propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them, together with the mapping from the latent causal variables to the observed ones. We show that the proposed method learns the true parameters asymptotically. Experimental results on synthetic and real data demonstrate the identifiability and consistency results and the efficacy of the proposed method in learning latent causal representations.
- Abstract(参考訳): 因果表現学習の課題は、下位レベルの観察に影響を与える潜在的な上位の因果表現を明らかにすることである。
しかし、観測データから真の潜伏因果関係を同定する一方で、潜伏変数間の即時因果関係を許容することは依然として困難である。
この目的のために、推移性、置換不確定性、スケール不確定性の3つの観測から潜在空間を同定する3つの本質的性質の分析から始める。
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
推移性に起因する同定不可能な問題に対処するため,基礎となる潜在因果モデルが線形-ガウスモデルを満たす新たな識別可能性条件を導入し,因果係数とガウス雑音の分布を追加の観測変数で変調する。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
さらに、この理論結果に基づいて、潜時因果変数から観測された因果変数へのマッピングとともに、潜時因果表現と因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
提案手法は, 漸近的に真のパラメータを学習することを示す。
合成および実データを用いた実験結果から,潜在因果表現の学習における識別性と一貫性,および提案手法の有効性が示された。
関連論文リスト
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
観測データからの因果発見は、非常に有望である。
既存の手法は根底にある因果構造に関する強い仮定に依存している。
線形・非線形・潜在変数モデルにまたがる因果探索のためのフレキシブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-26T14:09:06Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
因果解離は因果モデルを通して相互に関係する潜伏変数を用いてデータの表現を明らかにすることを目的としている。
本稿では,各介入が潜伏変数のメカニズムを変えることにより,未ペアの観測データと介入データが利用可能となるシナリオに焦点を当てる。
因果変数が完全に観測されると、忠実性の仮定の下で因果モデルを特定するために統計的に一貫したアルゴリズムが開発された。
論文 参考訳(メタデータ) (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。