論文の概要: Large Language Models
- arxiv url: http://arxiv.org/abs/2307.05782v1
- Date: Tue, 11 Jul 2023 20:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 15:10:06.884973
- Title: Large Language Models
- Title(参考訳): 大規模言語モデル
- Authors: Michael R. Douglas
- Abstract要約: これらの講義は、数学や物理学の背景を持つ読者向けに書かれたもので、簡単な歴史と芸術の現状について調査する。
次に、LLMの動作方法と、テキスト中の次の単語を予測するためにトレーニングされたモデルが、インテリジェンスを表示する他のタスクを実行できる、という現在のアイデアについて調べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence is making spectacular progress, and one of the best
examples is the development of large language models (LLMs) such as OpenAI's
GPT series. In these lectures, written for readers with a background in
mathematics or physics, we give a brief history and survey of the state of the
art, and describe the underlying transformer architecture in detail. We then
explore some current ideas on how LLMs work and how models trained to predict
the next word in a text are able to perform other tasks displaying
intelligence.
- Abstract(参考訳): 人工知能は目覚ましい進歩を遂げており、その好例の1つはOpenAIのGPTシリーズのような大規模言語モデル(LLM)の開発である。
数学や物理学のバックグラウンドを持つ読者向けに書かれたこれらの講義では、芸術の状況に関する簡単な歴史と調査を行い、基礎となるトランスフォーマーアーキテクチャを詳細に記述する。
次に、LLMの動作方法と、テキスト中の次の単語を予測するためにトレーニングされたモデルが、インテリジェンスを表示する他のタスクを実行できる、という現在のアイデアについて調べる。
関連論文リスト
- The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - Large Language Models for Mathematicians [53.27302720305432]
大規模言語モデル(LLM)は、汎用言語理解、特に高品質なテキストやコンピュータコードを生成する能力に多大な関心を集めている。
本稿では,プロの数学者をどの程度支援できるかについて論じる。
論文 参考訳(メタデータ) (2023-12-07T18:59:29Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
非言語的なイメージを外国語のような個別のトークン列に変換するために、よく設計されたビジュアルトークン化器を導入する。
結果として得られる視覚トークンは、単語に相応しいハイレベルな意味論を含み、画像から変化する動的シーケンス長もサポートする。
この統合によりLaVITは、マルチモーダルコンテンツの理解と生成を同時に行うための印象的な汎用インターフェースとして機能する。
論文 参考訳(メタデータ) (2023-09-09T03:01:38Z) - A Systematic Survey of Prompt Engineering on Vision-Language Foundation
Models [43.35892536887404]
プロンプトエンジニアリングは、新しいタスクにモデルを適応させるために、プロンプトとして知られるタスク固有のヒントで、トレーニング済みの大きなモデルを拡張することを含む。
本稿では,3種類の視覚言語モデルについて,最先端の研究の総合的な調査を行うことを目的とする。
論文 参考訳(メタデータ) (2023-07-24T17:58:06Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream)は、Large Language Models (LLM)の言語画像理解能力を高めるために設計された、新しいニューラルネットワークである。
我々のアプローチは、視覚と言語理解のギャップを埋め、より洗練されたドキュメントインテリジェンスアシスタントの開発の道を開く。
論文 参考訳(メタデータ) (2023-05-24T11:59:13Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
本研究では,実世界の連続型センサを言語モデルに組み込むための具体的言語モデルを提案する。
我々は、複数の具体的タスクのために、事前訓練された大規模言語モデルとともに、これらのエンコーディングをエンドツーエンドにトレーニングする。
562Bパラメータを持つ大モデル PaLM-E-562B は、OK-VQA 上での最先端性能を持つ視覚言語ジェネラリストである。
論文 参考訳(メタデータ) (2023-03-06T18:58:06Z) - Foundation Models for Natural Language Processing -- Pre-trained
Language Models Integrating Media [0.0]
ファンデーションモデルは自然言語処理のための事前訓練された言語モデルである。
画像処理やビデオ処理からロボット制御学習まで、幅広いメディアや問題領域に適用することができる。
本書は、ファンデーションモデルの研究および応用における技術の現状を概観する。
論文 参考訳(メタデータ) (2023-02-16T20:42:04Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。