論文の概要: SC-NeuS: Consistent Neural Surface Reconstruction from Sparse and Noisy
Views
- arxiv url: http://arxiv.org/abs/2307.05892v1
- Date: Wed, 12 Jul 2023 03:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 14:30:09.640901
- Title: SC-NeuS: Consistent Neural Surface Reconstruction from Sparse and Noisy
Views
- Title(参考訳): SC-NeuS : スパース・ノイズからの一貫した神経表面再構成
- Authors: Shi-Sheng Huang, Zi-Xin Zou, Yi-Chi Zhang, Hua Huang
- Abstract要約: 本稿では,ノイズの多いカメラポーズによるスパースビューからの一貫した表面再構成について,特に注目する。
従来のアプローチとは異なり、この論文の重要な違いは、神経表面の明示的な幾何から直接多視点制約を利用することである。
本稿では, SC-NeuS と呼ばれるニューラルサーフェスとカメラポーズの協調学習手法を提案する。
- 参考スコア(独自算出の注目度): 20.840876921128956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent neural surface reconstruction by volume rendering approaches have
made much progress by achieving impressive surface reconstruction quality, but
are still limited to dense and highly accurate posed views. To overcome such
drawbacks, this paper pays special attention on the consistent surface
reconstruction from sparse views with noisy camera poses. Unlike previous
approaches, the key difference of this paper is to exploit the multi-view
constraints directly from the explicit geometry of the neural surface, which
can be used as effective regularization to jointly learn the neural surface and
refine the camera poses. To build effective multi-view constraints, we
introduce a fast differentiable on-surface intersection to generate on-surface
points, and propose view-consistent losses based on such differentiable points
to regularize the neural surface learning. Based on this point, we propose a
jointly learning strategy for neural surface and camera poses, named SC-NeuS,
to perform geometry-consistent surface reconstruction in an end-to-end manner.
With extensive evaluation on public datasets, our SC-NeuS can achieve
consistently better surface reconstruction results with fine-grained details
than previous state-of-the-art neural surface reconstruction approaches,
especially from sparse and noisy camera views.
- Abstract(参考訳): ボリュームレンダリングによる最近の神経表面再構成は、印象的な表面再構成品質を達成することで大きな進歩を遂げているが、それでも高密度で高精度なポーズドビューに限定されている。
このような欠点を克服するために、ノイズの多いカメラポーズによるスパースビューから一貫した表面再構成を特に注目する。
従来のアプローチと異なり,本論文の主な違いは,ニューラルサーフェスの明示的な幾何から,マルチビュー制約を直接活用することであり,ニューラルサーフェスを共同で学習し,カメラポーズを洗練するための効果的な正規化として使用できる。
実効的な多視点制約を構築するために,地上の点を生成するための高速な微分可能交叉を導入し,そのような微分可能な点に基づく視点依存的損失を提案し,ニューラルサーフェス学習を規則化する。
そこで本稿では, SC-NeuS と呼ばれるニューラルサーフェスとカメラポーズの協調学習手法を提案する。
公開データセットを広範囲に評価することで,前回のニューラルサーフェス再構成法よりも細部まで細部まで細分化した表面再構成結果が得られる。
関連論文リスト
- NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction [63.85586195085141]
サイン付き距離関数 (SDF) を用いたボリュームレンダリングは, 表面再構成において有意な機能を示した。
ニューロディン(NeuRodin)は、新しい2段階の神経表面再構成フレームワークである。
NeuRodinは高忠実な表面再構成を実現し、密度ベース手法の柔軟な最適化特性を維持している。
論文 参考訳(メタデータ) (2024-08-19T17:36:35Z) - Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
ニューラルサーフェス・コンストラクション(NSR)の最近の進歩は、ボリュームレンダリングと組み合わせることで、マルチビュー・コンストラクションを著しく改善している。
本稿では,多種多様な視覚的タスクから価値ある特徴を活用すべく,特徴レベルの一貫した損失について検討する。
DTU と EPFL を用いて解析した結果,画像マッチングと多視点ステレオデータセットによる特徴が,他のプリテキストタスクよりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-08-04T16:09:46Z) - PSDF: Prior-Driven Neural Implicit Surface Learning for Multi-view
Reconstruction [31.768161784030923]
このフレームワークは、事前訓練されたMVSネットワークとNISRモデルに固有の内部幾何学的先駆体から外部幾何学的先駆体を利用する。
Tanks and Templesデータセットの実験は、PSDFが複雑な制御されていないシーンで最先端のパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2024-01-23T13:30:43Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
本研究では,表面の高度に忠実な再構成を実現するために,地上の事前情報を活用する新しいスパース・ビュー・リコンストラクション・フレームワークを提案する。
具体的には,大域的幾何アライメントと局所的幾何洗練に関するいくつかの制約を設計し,粗い形状と細部を協調的に最適化する。
DTUとBlendedMVSデータセットによる2つの一般的なスパース設定の実験結果は、最先端の手法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2023-12-21T16:04:45Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
我々は,3次元形状を点から復元するという課題に対処する形状再構成アーキテクチャであるニューラルポアソン表面再構成(nPSR)を導入する。
nPSRには2つの大きな利点がある: まず、高分解能評価において同等の性能を達成しつつ、低分解能データの効率的なトレーニングを可能にする。
全体として、ニューラル・ポアソン表面の再構成は、形状再構成における古典的なディープニューラルネットワークの限界を改良するだけでなく、再構築品質、走行時間、分解能非依存の観点からも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-03T13:56:07Z) - Depth-NeuS: Neural Implicit Surfaces Learning for Multi-view
Reconstruction Based on Depth Information Optimization [6.493546601668505]
ニュートラルサーフェス表現とレンダリングの方法、例えばNeuSは、ボリュームレンダリングを通じてニュートラルサーフェスを学習することがますます人気になっていることを示した。
既存の手法では深度情報の直接表現が欠けているため、幾何学的特徴によって物体の再構成が制限されない。
これは、既存の手法では、深度情報を使わずに表面の正規表現しか使わないためである。
多視点再構成のための深度情報最適化に基づくDepth-NeuSと呼ばれる暗黙曲面学習手法を提案する。
論文 参考訳(メタデータ) (2023-03-30T01:19:27Z) - SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse
views [40.7986573030214]
SparseNeuSは,多視点画像から表面再構成を行う新しいニューラルレンダリング手法である。
SparseNeuSは、新しいシーンに一般化し、スパースイメージ(2または3まで)でうまく機能する。
論文 参考訳(メタデータ) (2022-06-12T13:34:03Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
物体やシーンを2次元画像入力から高忠実度に再構成するニュートラルサーフェス(NeuS)を提案する。
DVRやIDRのような既存の神経表面再構成アプローチでは、フォアグラウンドマスクを監督する必要がある。
本研究では,従来のボリュームレンダリング手法が表面再構成に固有の幾何学的誤差を引き起こすことを観察する。
マスクの監督なしでもより正確な表面再構成を実現するため,第一次近似ではバイアスのない新しい定式化を提案する。
論文 参考訳(メタデータ) (2021-06-20T12:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。