Image Denoising and the Generative Accumulation of Photons
- URL: http://arxiv.org/abs/2307.06607v2
- Date: Tue, 1 Aug 2023 17:44:28 GMT
- Title: Image Denoising and the Generative Accumulation of Photons
- Authors: Alexander Krull, Hector Basevi, Benjamin Salmon, Andre Zeug, Franziska
M\"uller, Samuel Tonks, Leela Muppala, Ales Leonardis
- Abstract summary: We show that a network trained to predict where the next photon could arrive is in fact solving the minimum mean square error (MMSE) denoising task.
We present a new strategy for self-supervised denoising.
We present a new method for sampling from the posterior of possible solutions by iteratively sampling and adding small numbers of photons to the image.
- Score: 63.14988413396991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a fresh perspective on shot noise corrupted images and noise
removal. By viewing image formation as the sequential accumulation of photons
on a detector grid, we show that a network trained to predict where the next
photon could arrive is in fact solving the minimum mean square error (MMSE)
denoising task. This new perspective allows us to make three contributions: We
present a new strategy for self-supervised denoising, We present a new method
for sampling from the posterior of possible solutions by iteratively sampling
and adding small numbers of photons to the image. We derive a full generative
model by starting this process from an empty canvas. We call this approach
generative accumulation of photons (GAP). We evaluate our method quantitatively
and qualitatively on 4 new fluorescence microscopy datasets, which will be made
available to the community. We find that it outperforms supervised,
self-supervised and unsupervised baselines or performs on-par.
Related papers
- Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Markup-to-Image Diffusion Models with Scheduled Sampling [111.30188533324954]
Building on recent advances in image generation, we present a data-driven approach to rendering markup into images.
The approach is based on diffusion models, which parameterize the distribution of data using a sequence of denoising operations.
We conduct experiments on four markup datasets: mathematical formulas (La), table layouts (HTML), sheet music (LilyPond), and molecular images (SMILES)
arXiv Detail & Related papers (2022-10-11T04:56:12Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
We introduce a novel algorithm dubbed SNIPS, which draws samples from the posterior distribution of any linear inverse problem.
Our solution incorporates ideas from Langevin dynamics and Newton's method, and exploits a pre-trained minimum mean squared error (MMSE)
We show that the samples produced are sharp, detailed and consistent with the given measurements, and their diversity exposes the inherent uncertainty in the inverse problem being solved.
arXiv Detail & Related papers (2021-05-31T13:33:21Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Stochastic Image Denoising by Sampling from the Posterior Distribution [25.567566997688044]
We propose a novel denoising approach that produces viable and high quality results, while maintaining a small MSE.
Our method employs Langevin dynamics that relies on a repeated application of any given MMSE denoiser, obtaining the reconstructed image by effectively sampling from the posterior distribution.
Due to its perceptuality, the proposed algorithm can produce a variety of high-quality outputs for a given noisy input, all shown to be legitimate denoising results.
arXiv Detail & Related papers (2021-01-23T18:28:19Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.