Stochastic Image Denoising by Sampling from the Posterior Distribution
- URL: http://arxiv.org/abs/2101.09552v2
- Date: Tue, 2 Mar 2021 12:46:50 GMT
- Title: Stochastic Image Denoising by Sampling from the Posterior Distribution
- Authors: Bahjat Kawar, Gregory Vaksman, Michael Elad
- Abstract summary: We propose a novel denoising approach that produces viable and high quality results, while maintaining a small MSE.
Our method employs Langevin dynamics that relies on a repeated application of any given MMSE denoiser, obtaining the reconstructed image by effectively sampling from the posterior distribution.
Due to its perceptuality, the proposed algorithm can produce a variety of high-quality outputs for a given noisy input, all shown to be legitimate denoising results.
- Score: 25.567566997688044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image denoising is a well-known and well studied problem, commonly targeting
a minimization of the mean squared error (MSE) between the outcome and the
original image. Unfortunately, especially for severe noise levels, such Minimum
MSE (MMSE) solutions may lead to blurry output images. In this work we propose
a novel stochastic denoising approach that produces viable and high perceptual
quality results, while maintaining a small MSE. Our method employs Langevin
dynamics that relies on a repeated application of any given MMSE denoiser,
obtaining the reconstructed image by effectively sampling from the posterior
distribution. Due to its stochasticity, the proposed algorithm can produce a
variety of high-quality outputs for a given noisy input, all shown to be
legitimate denoising results. In addition, we present an extension of our
algorithm for handling the inpainting problem, recovering missing pixels while
removing noise from partially given data.
Related papers
- Image Denoising and the Generative Accumulation of Photons [63.14988413396991]
We show that a network trained to predict where the next photon could arrive is in fact solving the minimum mean square error (MMSE) denoising task.
We present a new strategy for self-supervised denoising.
We present a new method for sampling from the posterior of possible solutions by iteratively sampling and adding small numbers of photons to the image.
arXiv Detail & Related papers (2023-07-13T08:03:32Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
We propose a new denoising method based on score-based reverse diffusion sampling.
Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data.
arXiv Detail & Related papers (2022-03-23T10:35:06Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
We introduce a novel algorithm dubbed SNIPS, which draws samples from the posterior distribution of any linear inverse problem.
Our solution incorporates ideas from Langevin dynamics and Newton's method, and exploits a pre-trained minimum mean squared error (MMSE)
We show that the samples produced are sharp, detailed and consistent with the given measurements, and their diversity exposes the inherent uncertainty in the inverse problem being solved.
arXiv Detail & Related papers (2021-05-31T13:33:21Z) - Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser [7.7288480250888]
We develop a robust and general methodology for making use of implicit priors in deep neural networks.
A CNN trained to perform blind (i.e., with unknown noise level) least-squares denoising is presented.
A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any linear inverse problem.
arXiv Detail & Related papers (2020-07-27T15:40:46Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.