Hyperbolic Genome Embeddings
- URL: http://arxiv.org/abs/2507.21648v1
- Date: Tue, 29 Jul 2025 10:06:17 GMT
- Title: Hyperbolic Genome Embeddings
- Authors: Raiyan R. Khan, Philippe Chlenski, Itsik Pe'er,
- Abstract summary: We develop a novel application of hyperbolic CNNs that exploits the evolutionarily-informed structure of biological systems.<n>Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences.<n>Our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets.
- Score: 0.6656737591902598
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current approaches to genomic sequence modeling often struggle to align the inductive biases of machine learning models with the evolutionarily-informed structure of biological systems. To this end, we formulate a novel application of hyperbolic CNNs that exploits this structure, enabling more expressive DNA sequence representations. Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences pertaining to core functional and regulatory behavior. Across 37 out of 42 genome interpretation benchmark datasets, our hyperbolic models outperform their Euclidean equivalents. Notably, our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets, consistently outperforming many DNA language models while using orders of magnitude fewer parameters and avoiding pretraining. Our results include a novel set of benchmark datasets--the Transposable Elements Benchmark--which explores a major but understudied component of the genome with deep evolutionary significance. We further motivate our work by exploring how our hyperbolic models recognize genomic signal under various data-generating conditions and by constructing an empirical method for interpreting the hyperbolicity of dataset embeddings. Throughout these assessments, we find persistent evidence highlighting the potential of our hyperbolic framework as a robust paradigm for genome representation learning. Our code and benchmark datasets are available at https://github.com/rrkhan/HGE.
Related papers
- Learning Genomic Structure from $k$-mers [2.07180164747172]
We present a method for analyzing read data using contrastive learning.<n>An encoder model is trained to produce embeddings that cluster together sequences from the same genomic region.<n>The model can also be trained fully self-supervised on read data, enabling analysis without the need to construct a full genome assembly.
arXiv Detail & Related papers (2025-05-22T13:46:18Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA [2.543784712990392]
Large genomic DNA language models (DNALMs) aim to learn generalizable representations of diverse DNA elements.<n>Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants.
arXiv Detail & Related papers (2024-12-06T21:23:35Z) - Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning [0.0]
We provide a theoretical analysis of k-mer-based representations of genomes.
We propose a lightweight and scalable model for performing metagenomic binning at the genome read level.
arXiv Detail & Related papers (2024-11-04T14:36:51Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Hyperbolic Delaunay Geometric Alignment [52.835250875177756]
We propose a similarity score for comparing datasets in a hyperbolic space.
The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets.
We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets.
arXiv Detail & Related papers (2024-04-12T17:14:58Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.