Improving Grammatical Error Correction via Contextual Data Augmentation
- URL: http://arxiv.org/abs/2406.17456v1
- Date: Tue, 25 Jun 2024 10:49:56 GMT
- Title: Improving Grammatical Error Correction via Contextual Data Augmentation
- Authors: Yixuan Wang, Baoxin Wang, Yijun Liu, Qingfu Zhu, Dayong Wu, Wanxiang Che,
- Abstract summary: We propose a synthetic data construction method based on contextual augmentation.
Specifically, we combine rule-based substitution with model-based generation.
We also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data.
- Score: 49.746484518527716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, data augmentation through synthetic data has been widely used in the field of Grammatical Error Correction (GEC) to alleviate the problem of data scarcity. However, these synthetic data are mainly used in the pre-training phase rather than the data-limited fine-tuning phase due to inconsistent error distribution and noisy labels. In this paper, we propose a synthetic data construction method based on contextual augmentation, which can ensure an efficient augmentation of the original data with a more consistent error distribution. Specifically, we combine rule-based substitution with model-based generation, using the generative model to generate a richer context for the extracted error patterns. Besides, we also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data. Experiments on CoNLL14 and BEA19-Test show that our proposed augmentation method consistently and substantially outperforms strong baselines and achieves the state-of-the-art level with only a few synthetic data.
Related papers
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data.
A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize.
arXiv Detail & Related papers (2023-10-27T01:57:27Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - On-the-fly Denoising for Data Augmentation in Natural Language
Understanding [101.46848743193358]
We propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.
Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.
arXiv Detail & Related papers (2022-12-20T18:58:33Z) - Prompting to Distill: Boosting Data-Free Knowledge Distillation via
Reinforced Prompt [52.6946016535059]
Data-free knowledge distillation (DFKD) conducts knowledge distillation via eliminating the dependence of original training data.
We propose a prompt-based method, termed as PromptDFD, that allows us to take advantage of learned language priors.
As shown in our experiments, the proposed method substantially improves the synthesis quality and achieves considerable improvements on distillation performance.
arXiv Detail & Related papers (2022-05-16T08:56:53Z) - Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms [5.366354612549173]
We focus on data-synthesis methods to create high-quality synthetic data.
We present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in actual data.
Experimental results show that using the synthetic data created by our approach results in significantly better APE performance than other synthetic data created by existing methods.
arXiv Detail & Related papers (2022-04-08T07:48:57Z) - Synt++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition [18.924716098922683]
Machine learning with synthetic data is not trivial due to the gap between the synthetic and the real data distributions.
We propose two novel techniques during training to mitigate the problems due to the distribution gap.
We show that these methods significantly improve the training of speech recognition models using synthetic data.
arXiv Detail & Related papers (2021-10-21T21:11:42Z) - Synthetic Data Generation for Grammatical Error Correction with Tagged
Corruption Models [15.481446439370343]
We use error type tags from automatic annotation tools such as ERRANT to guide synthetic data generation.
We build a new, large synthetic pre-training data set with error tag frequency distributions matching a given development set.
Our approach is particularly effective in adapting a GEC system, trained on mixed native and non-native English, to a native English test set.
arXiv Detail & Related papers (2021-05-27T17:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.