論文の概要: Using Google Trends as a proxy for occupant behavior to predict building
energy consumption
- arxiv url: http://arxiv.org/abs/2111.00426v1
- Date: Sun, 31 Oct 2021 08:05:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 10:06:55.962976
- Title: Using Google Trends as a proxy for occupant behavior to predict building
energy consumption
- Title(参考訳): Google Trendsを住民行動のプロキシとして利用して建設エネルギー消費を予測する
- Authors: Chun Fu and Clayton Miller
- Abstract要約: そこで本研究では,Google Trendsプラットフォーム上でのトピックの検索量を,利用者の行動と建物利用のプロキシとして活用するアプローチを提案する。
その結果、高い相関性を持つGoogle Trendsデータは、建物のサブセット全体のRMSLEエラーを、GEPIIIコンペティションの上位5チームのパフォーマンスのレベルに効果的に低減できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the availability of larger amounts of energy data and
advanced machine learning algorithms has created a surge in building energy
prediction research. However, one of the variables in energy prediction models,
occupant behavior, is crucial for prediction performance but hard-to-measure or
time-consuming to collect from each building. This study proposes an approach
that utilizes the search volume of topics (e.g., education} or Microsoft Excel)
on the Google Trends platform as a proxy of occupant behavior and use of
buildings. Linear correlations were first examined to explore the relationship
between energy meter data and Google Trends search terms to infer building
occupancy. Prediction errors before and after the inclusion of the trends of
these terms were compared and analyzed based on the ASHRAE Great Energy
Predictor III (GEPIII) competition dataset. The results show that highly
correlated Google Trends data can effectively reduce the overall RMSLE error
for a subset of the buildings to the level of the GEPIII competition's top five
winning teams' performance. In particular, the RMSLE error reduction during
public holidays and days with site-specific schedules are respectively reduced
by 20-30% and 2-5%. These results show the potential of using Google Trends to
improve energy prediction for a portion of the building stock by automatically
identifying site-specific and holiday schedules.
- Abstract(参考訳): 近年、大量のエネルギーデータと高度な機械学習アルゴリズムが利用可能になり、建築エネルギー予測の研究が急増している。
しかし, エネルギー予測モデルの1つの変数, 占有行動は, 予測性能には不可欠であるが, それぞれの建物から収集するのに時間を要する。
本研究では,Google Trendsプラットフォーム上でのトピックの検索量(例えば,教育,Microsoft Excel)を,利用者の行動と建物利用のプロキシとして利用するアプローチを提案する。
まず, エネルギーメータデータとGoogle Trends検索語の関係を調査し, 建物占有率を推定した。
ASHRAE Great Energy Predictor III(GEPIII)コンペティションデータセットに基づいて,これらの用語の傾向の前後の予測誤差を比較し,分析した。
その結果、高い相関性を持つGoogle Trendsデータは、建物のサブセット全体のRMSLEエラーを、GEPIIIコンペティションの上位5チームのパフォーマンスのレベルに効果的に低減できることを示した。
特に、休日のrmsleエラー低減とサイト固有のスケジュールの日数をそれぞれ20-30%と2-5%削減する。
これらの結果は、サイト固有のスケジュールとホリデースケジュールを自動的に特定することによって、google trendsを使って建物の一部のエネルギー予測を改善する可能性を示している。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
本稿では,人工知能を用いた短期負荷予測手法を提案する。
その結果、(負荷予測タスクに適応した)持続的項と回帰的項の組み合わせは、最高の予測精度が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-21T12:23:09Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - The Forecastability of Underlying Building Electricity Demand from Time
Series Data [1.3757257689932039]
ビルのエネルギー消費予測は、ビルのエネルギー管理システムにおいて有望な解決策となっている。
建物の将来的なエネルギー需要を予測するデータ駆動のアプローチは、科学文献で見ることができる。
このような建物のエネルギー需要を予測するために利用できる最も正確な予測モデルの同定は依然として困難である。
論文 参考訳(メタデータ) (2023-11-29T20:47:47Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Comparative Analysis of Time Series Forecasting Approaches for Household
Electricity Consumption Prediction [3.7458346891274013]
データマイニングツールであるWekaを使用して、まず、Kaggleのデータサイエンスコミュニティから利用可能な、時間給と日給のエネルギー消費データセットのモデルを適用します。
第2に,大韓民国選択世帯の世帯エネルギー消費を天気データと無気象データを用いて予測するために,時系列予測モデルであるARIMAとVARをピソンに導入した。
以上の結果から,エネルギー消費予測の最良の方法は,多層パーセプトロンとガウスプロセス回帰に続く支持ベクトル回帰であることがわかった。
論文 参考訳(メタデータ) (2022-07-03T12:16:54Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
コンピュータビジョンと自然言語処理の分野における関連モデルについて検討する。
継続的な性能向上のために、これまで予想されていたよりもエネルギー消費の軟化が見られた。
論文 参考訳(メタデータ) (2021-09-12T09:40:18Z) - Energy consumption forecasting using a stacked nonparametric Bayesian
approach [3.4449150144113254]
複数の時系列データを用いて家庭のエネルギー消費を予測する方法について検討する。
我々は,各タスクに適用された各GPの予測後部を,次のレベルGPの事前および可能性に使用するスタック型GP法を構築する。
いくつかの州にまたがるオーストラリアの世帯のエネルギー消費を予測するために,我々のモデルを実世界のデータセットに適用した。
論文 参考訳(メタデータ) (2020-11-11T02:27:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。