論文の概要: ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks
- arxiv url: http://arxiv.org/abs/2402.16763v2
- Date: Fri, 27 Sep 2024 11:49:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 04:32:42.295853
- Title: ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks
- Title(参考訳): ELiSe: 構造化されたリカレントネットワークにおけるシーケンスの効率的な学習
- Authors: Laura Kriener, Kristin Völk, Ben von Hünerbein, Federico Benitez, Walter Senn, Mihai A. Petrovici,
- Abstract要約: 局所的な常時オンおよび位相自由可塑性のみを用いて,効率的な学習シーケンスのモデルを構築した。
鳥の鳴き声学習のモックアップでELiSeの能力を実証し、パラメトリゼーションに関してその柔軟性を実証する。
- 参考スコア(独自算出の注目度): 1.5931140598271163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavior can be described as a temporal sequence of actions driven by neural activity. To learn complex sequential patterns in neural networks, memories of past activities need to persist on significantly longer timescales than the relaxation times of single-neuron activity. While recurrent networks can produce such long transients, training these networks is a challenge. Learning via error propagation confers models such as FORCE, RTRL or BPTT a significant functional advantage, but at the expense of biological plausibility. While reservoir computing circumvents this issue by learning only the readout weights, it does not scale well with problem complexity. We propose that two prominent structural features of cortical networks can alleviate these issues: the presence of a certain network scaffold at the onset of learning and the existence of dendritic compartments for enhancing neuronal information storage and computation. Our resulting model for Efficient Learning of Sequences (ELiSe) builds on these features to acquire and replay complex non-Markovian spatio-temporal patterns using only local, always-on and phase-free synaptic plasticity. We showcase the capabilities of ELiSe in a mock-up of birdsong learning, and demonstrate its flexibility with respect to parametrization, as well as its robustness to external disturbances.
- Abstract(参考訳): 行動は、神経活動によって引き起こされる行動の時間的シーケンスとして記述することができる。
ニューラルネットワークで複雑なシーケンシャルパターンを学習するには、単一ニューロンの活動の緩和時間よりもはるかに長い時間スケールで過去のアクティビティの記憶を持続する必要がある。
リカレントネットワークはそのような長いトランジェントを生成することができるが、これらのネットワークのトレーニングは難しい。
エラー伝播による学習は、Force、RTRL、BPTTなどのモデルが重要な機能上の利点であるが、生物学的な妥当性を犠牲にしている。
貯水池計算は、読み出し重量のみを学習することでこの問題を回避するが、問題複雑度ではうまくスケールしない。
本稿では, 学習開始時のネットワーク足場の存在と, 神経情報記憶・計算の高度化のための樹状部の存在という, 皮質ネットワークの構造的特徴がこれらの問題を緩和できることを示す。
EiSe(Efficient Learning of Sequences)は, 局所的, 常オン的, 位相自由なシナプス塑性のみを用いて, 複雑な非マルコフ時空間パターンの獲得と再生を行う。
鳥の鳴き声学習のモックアップでELiSeの能力を実証し、パラメトリゼーションに対する柔軟性と外乱に対する堅牢性を示す。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Spiking representation learning for associative memories [0.0]
本稿では、教師なし表現学習と連想記憶操作を行う新しい人工スパイクニューラルネットワーク(SNN)を提案する。
モデルの構造は新皮質列状構造から派生し,隠れた表現を学習するためのフィードフォワードプロジェクションと,連想記憶を形成するための繰り返しプロジェクションを組み合わせたものである。
論文 参考訳(メタデータ) (2024-06-05T08:30:11Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition [0.0]
ニューロモルフィックハードウェアとイベントベースのセンサーを組み合わせたスパイクニューラルネットワークは、エッジにおける低レイテンシと低パワー推論への関心が高まっている。
スパイキングニューロンにおけるシナプスおよび膜漏れの影響について検討する。
論文 参考訳(メタデータ) (2022-11-14T21:34:02Z) - Spiking Neural Networks for event-based action recognition: A new task to understand their advantage [1.4348901037145936]
スパイキングニューラルネットワーク(SNN)は、そのユニークな時間的ダイナミクスによって特徴づけられる。
フィードフォワードニューラルネットワークにおいて、スパイキングニューロンが時間的特徴抽出を可能にする方法を示す。
また、繰り返しSNNがLSTMに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-29T16:22:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、脳機能と構造をモデル化するために頻繁に使用される。
本研究では,時間変化刺激による時間・流れ制御タスクを行うために,小型完全接続型RNNを訓練した。
論文 参考訳(メタデータ) (2019-06-03T21:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。