Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured
Potential Barriers and Interactions
- URL: http://arxiv.org/abs/2001.11792v2
- Date: Mon, 8 Jun 2020 08:08:49 GMT
- Title: Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured
Potential Barriers and Interactions
- Authors: Andreas Kruckenhauser, Lukas M. Sieberer, William G. Tobias, Kyle
Matsuda, Luigi De Marco, Jun-Ru Li, Giacomo Valtolina, Ana Maria Rey, Jun Ye,
Mikhail A. Baranov and Peter Zoller
- Abstract summary: We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases.
The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers.
- Score: 2.409938612878261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design dipolar quantum many-body Hamiltonians that will facilitate the
realization of exotic quantum phases under current experimental conditions
achieved for polar molecules. The main idea is to modulate both single-body
potential barriers and two-body dipolar interactions on a spatial scale of tens
of nanometers to strongly enhance energy scales and, therefore, relax
temperature requirements for observing new quantum phases of engineered
many-body systems. We consider and compare two approaches. In the first,
nanoscale barriers are generated with standing wave optical light fields
exploiting optical nonlinearities. In the second, static electric field
gradients in combination with microwave dressing are used to write
nanostructured spatial patterns on the induced electric dipole moments, and
thus dipolar interactions. We study the formation of inter-layer and interface
bound states of molecules in these configurations, and provide detailed
estimates for binding energies and expected losses for present experimental
setups.
Related papers
- Electrically defined quantum dots for bosonic excitons [0.0]
We show electrically-defined quantum dots for excitons in monolayer semiconductors.
Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton--exciton interactions.
arXiv Detail & Related papers (2024-02-29T15:45:22Z) - Fluctuation-induced Forces on Nanospheres in External Fields [0.0]
We analyze the radiative forces between two nanospheres mediated via the quantum and thermal fluctuations of the electromagnetic field in the presence of an external drive.
We demonstrate that an external squeezed vacuum state creates similar potentials to a laser, despite its zero average intensity.
Considering the nanospheres trapped by optical tweezers, we examine the total interparticle potential as a function of various experimentally relevant parameters.
arXiv Detail & Related papers (2023-11-17T12:51:19Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Integrated quantum polariton interferometry [0.0]
We show that integrated circuits of single polaritons can be arranged to build deterministic quantum logic gates.
Our results introduce a novel paradigm for the development of practical quantum polaritonic devices.
arXiv Detail & Related papers (2021-07-28T14:09:23Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.