論文の概要: Architectures and circuits for distributed quantum computing
- arxiv url: http://arxiv.org/abs/2307.07908v1
- Date: Sun, 16 Jul 2023 00:03:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 17:09:27.429030
- Title: Architectures and circuits for distributed quantum computing
- Title(参考訳): 分散量子コンピューティングのためのアーキテクチャと回路
- Authors: Daniele Cuomo
- Abstract要約: この論文は、分散パラダイムに基づく量子計算を提供するネットワークを扱う。
この論文の主な貢献は、全体的な忠実度に対するテレゲートの影響を最小限に抑えるコンパイラの定義である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis treats networks providing quantum computation based on
distributed paradigms. Compared to architectures relying on one processor, a
network promises to be more scalable and less fault-prone. Developing a
distributed system able to provide practical quantum computation comes with
many challenges, each of which need to be faced with careful analysis in order
to create a massive integration of several components properly engineered. In
accordance with hardware technologies, currently under construction around the
globe, telegates represent the fundamental inter-processor operations. Each
telegate consists of several tasks: i) entanglement generation and
distribution, ii) local operations, and iii) classical communications.
Entanglement generation and distribution is an expensive resource, as it is
time-consuming. The main contribution of this thesis is on the definition of
compilers that minimize the impact of telegates on the overall fidelity.
Specifically, we give rigorous formulations of the subject problem, allowing us
to identify the inter-dependence between computation and communication. With
the support of some of the best tools for reasoning -- i.e. network
optimization, circuit manipulation, group theory and ZX-calculus -- we found
new perspectives on the way a distributed quantum computing system should
evolve.
- Abstract(参考訳): この論文は、分散パラダイムに基づく量子計算を提供するネットワークを扱う。
1つのプロセッサに依存するアーキテクチャと比較すると、ネットワークはよりスケーラブルで障害の少ないものになる。
実用的な量子計算を提供する分散システムの開発には多くの課題が伴うが、適切に設計された複数のコンポーネントの大規模な統合を構築するためには、慎重に分析する必要がある。
現在世界中で建設中のハードウェア技術に従って、テレゲートはプロセッサ間の基本的な操作を表す。
各テレゲートはいくつかのタスクから構成される。
一 絡み合いの発生及び分布
二 地方事業、及び
iii) 古典的コミュニケーション。
エンタングルメントの生成と配布は時間を要するので、高価なリソースである。
この論文の主な貢献は、全体的な忠実度に対するテレゲートの影響を最小限に抑えるコンパイラの定義である。
具体的には、対象問題の厳密な定式化を行い、計算と通信の相互依存を識別する。
推論のための最良のツール、すなわち、ネットワーク最適化、回路操作、グループ理論、ZX計算のサポートにより、分散量子コンピューティングシステムの進化方法に関する新たな視点が発見された。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
量子コンピューティングネットワークは、大規模な生成AI計算タスクと高度な量子アルゴリズムを実行する。
量子コンピューティングネットワークにおける効率的なリソース割り当ては、量子ビットの可変性とネットワークの複雑さのために重要な課題である。
我々は、生成学習から量子機械学習まで、最先端強化学習(RL)アルゴリズムを導入し、最適な量子リソース割り当てを行う。
論文 参考訳(メタデータ) (2024-01-13T17:16:38Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
大規模回路におけるモノリシック・テンポラル・コア間通信の時代の先駆的な特徴について述べる。
プログラムは、最大1000量子ビットをサポートする全対全接続コアアーキテクチャで実行される。
実証結果に基づいて,量子回路をマルチコアプロセッサにマッピングするための一連のガイドラインを提供し,大規模マルチコアアーキテクチャのベンチマークの基礎を定めている。
論文 参考訳(メタデータ) (2023-10-03T09:54:41Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
量子コンピュータは、古典的コンピュータが決して起こらない重要な問題を効率的に解決することを約束する。
完全に自動化された量子ソフトウェアスタックを開発する必要がある。
この研究は、今日のツールの"内部"の外観を提供し、量子回路のシミュレーション、コンパイル、検証などにおいてこれらの手段がどのように利用されるかを示す。
論文 参考訳(メタデータ) (2023-01-10T19:00:00Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
本稿では、将来のネットワークにおける最適化タスクを解決するために、量子コンピュータと量子チャネルを管理するための適応型分散量子コンピューティング手法を提案する。
提案手法に基づいて,スマートグリッド管理やIoT連携,UAV軌道計画など,今後のネットワークにおける協調最適化の潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-09-16T02:44:52Z) - Characterizing Qubit Traffic of a Quantum Intranet aiming at Modular
Quantum Computers [1.8602413562219944]
量子コアプロセッサは、量子コンピュータのスケーラビリティの究極の解決策として考えられている。
本稿では,マルチチップ相互接続型量子コンピュータで動作する量子回路の時間的特性評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-08-31T21:33:17Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Divide and Conquer for Combinatorial Optimization and Distributed
Quantum Computation [3.8221353389253676]
本稿では、大規模最適化問題を分散量子アーキテクチャにマッピングするハイブリッド変分法である量子除算法(QDCA)を紹介する。
これはグラフ分割と量子回路切断の組み合わせによって達成される。
我々は、最大独立集合問題のインスタンス上でQDCAをシミュレートし、類似の古典的アルゴリズムよりも優れた性能が得られることを確かめる。
論文 参考訳(メタデータ) (2021-07-15T18:00:32Z) - Quantum Algorithms and Simulation for Parallel and Distributed Quantum
Computing [0.0]
大規模量子コンピュータを構築するための実行可能なアプローチは、小規模量子コンピュータと量子ネットワークを相互接続することである。
並列および分散量子アルゴリズムの設計と検証を簡単にすることを目的としたシミュレーションプラットフォームであるInterlin-qを提案する。
論文 参考訳(メタデータ) (2021-06-12T19:41:48Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
量子通信ネットワークは、将来6G以降の通信ネットワークにおいて重要な構成要素となる可能性のある、有望な技術として登場しつつある。
近年の進歩は、実際の量子ハードウェアによる小規模および大規模量子通信ネットワークの展開に繋がった。
量子ネットワークにおいて、絡み合いは異なるノード間でのデータ転送を可能にする鍵となるリソースである。
論文 参考訳(メタデータ) (2021-05-30T11:34:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。