論文の概要: Optimizing Tensor Network Contraction Using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2204.09052v1
- Date: Mon, 18 Apr 2022 21:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 15:45:17.113686
- Title: Optimizing Tensor Network Contraction Using Reinforcement Learning
- Title(参考訳): 強化学習を用いたテンソルネットワーク収縮の最適化
- Authors: Eli A. Meirom, Haggai Maron, Shie Mannor, Gal Chechik
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
- 参考スコア(独自算出の注目度): 86.05566365115729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Computing (QC) stands to revolutionize computing, but is currently
still limited. To develop and test quantum algorithms today, quantum circuits
are often simulated on classical computers. Simulating a complex quantum
circuit requires computing the contraction of a large network of tensors. The
order (path) of contraction can have a drastic effect on the computing cost,
but finding an efficient order is a challenging combinatorial optimization
problem.
We propose a Reinforcement Learning (RL) approach combined with Graph Neural
Networks (GNN) to address the contraction ordering problem. The problem is
extremely challenging due to the huge search space, the heavy-tailed reward
distribution, and the challenging credit assignment. We show how a carefully
implemented RL-agent that uses a GNN as the basic policy construct can address
these challenges and obtain significant improvements over state-of-the-art
techniques in three varieties of circuits, including the largest scale networks
used in contemporary QC.
- Abstract(参考訳): 量子コンピューティング(qc)はコンピューティングに革命をもたらすが、現在はまだ限られている。
今日量子アルゴリズムを開発しテストするために、量子回路はしばしば古典的コンピュータ上でシミュレートされる。
複雑な量子回路をシミュレーションするには、テンソルの大きなネットワークの収縮を計算する必要がある。
収縮の順序(経路)は計算コストに大きな影響を与えるが、効率的な順序を見つけることは、組合せ最適化の問題である。
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
本稿では,GNNを基本方針として実装したRLエージェントが,これらの課題に対処し,現代QCで使用されている最大規模のネットワークを含む3種類の回路において,最先端技術に対する大幅な改善を実現する方法を示す。
関連論文リスト
- From Easy to Hard: Tackling Quantum Problems with Learned Gadgets For Real Hardware [0.0]
強化学習は強力なアプローチであることが証明されているが、量子ビット上の可能な操作の空間の指数的スケーリングによって、多くの制限が残っている。
本稿では,合成ゲートを自動的に学習するアルゴリズム($gadgets$)を開発し,探索を容易にするための強化学習エージェントに追加のアクションとして追加する。
GRLでは,TFIMの基底状態を最大107ドルの折り畳みで推定する際の誤差を改善する,非常にコンパクトなPQCが見つかる。
論文 参考訳(メタデータ) (2024-10-31T22:02:32Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
変分アルゴリズム (VQA) は, NISQシステムの実用化に向けた最有力候補の1つである。
本稿では,VQAの現状と最近の発展を考察し,近似最適化への適用性を強調した。
10ノードと20ノードのグラフ上でMaxCut問題を解くために,深さの異なるQAOA回路を実装した。
論文 参考訳(メタデータ) (2024-07-08T22:02:39Z) - Tensor Quantum Programming [0.0]
本研究では,行列積演算子を量子回路に符号化するアルゴリズムを開発した。
これは、微分方程式、最適化問題、量子化学において頻繁に遭遇する数に対して、最大50量子ビットでの有効性を示す。
論文 参考訳(メタデータ) (2024-03-20T10:44:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
量子コンピュータは、古典的コンピュータが決して起こらない重要な問題を効率的に解決することを約束する。
完全に自動化された量子ソフトウェアスタックを開発する必要がある。
この研究は、今日のツールの"内部"の外観を提供し、量子回路のシミュレーション、コンパイル、検証などにおいてこれらの手段がどのように利用されるかを示す。
論文 参考訳(メタデータ) (2023-01-10T19:00:00Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
既存のVQCまたはQNNベースの手法は、量子回路パラメータの勾配に基づく最適化を行うために、かなりの計算資源を必要とする。
本研究では、量子リカレントニューラルネットワーク(QRNN-RC)に貯水池計算(RC)フレームワークを適用し、逐次モデリングにアプローチする。
数値シミュレーションにより、QRNN-RCは、複数の関数近似および時系列タスクに対して、完全に訓練されたQRNNモデルに匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-04T17:30:46Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
本稿では,量子回路アーキテクチャを構築するための機械学習手法を提案する。
本稿では、この回路設計課題に取り組むために、ディープラーニング(PPR-DQL)フレームワークを用いた確率的ポリシー再利用を提案する。
論文 参考訳(メタデータ) (2021-12-10T19:07:56Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。