Exploiting FPGA Capabilities for Accelerated Biomedical Computing
- URL: http://arxiv.org/abs/2307.07914v1
- Date: Sun, 16 Jul 2023 01:20:17 GMT
- Title: Exploiting FPGA Capabilities for Accelerated Biomedical Computing
- Authors: Kayode Inadagbo, Baran Arig, Nisanur Alici, Murat Isik
- Abstract summary: This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents advanced neural network architectures including
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long
Short-Term Memory Networks (LSTMs), and Deep Belief Networks (DBNs) for
enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs). We
utilize the MIT-BIH Arrhythmia Database for training and validation,
introducing Gaussian noise to improve algorithm robustness. The implemented
models feature various layers for distinct processing and classification tasks
and techniques like EarlyStopping callback and Dropout layer are used to
mitigate overfitting. Our work also explores the development of a custom Tensor
Compute Unit (TCU) accelerator for the PYNQ Z1 board, offering comprehensive
steps for FPGA-based machine learning, including setting up the Tensil
toolchain in Docker, selecting architecture, configuring PS-PL, and compiling
and executing models. Performance metrics such as latency and throughput are
calculated for practical insights, demonstrating the potential of FPGAs in
high-performance biomedical computing. The study ultimately offers a guide for
optimizing neural network performance on FPGAs for various applications.
Related papers
- Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Harnessing FPGA Technology for Enhanced Biomedical Computation [0.0]
This research delves into sophisticated neural network frameworks like CNN, Recurrent Neural Networks (RNN), Long Short-Term Memory Networks (LSTMs), and Deep Belief Networks (DBNs)
By evaluating performance indicators like latency and throughput, we showcase the efficacy of FPGAs in advanced biomedical computing.
arXiv Detail & Related papers (2023-11-21T08:51:58Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
We propose a new smart network interface card (NIC) for distributed AI training systems using field-programmable gate arrays (FPGAs)
Our proposed FPGA-based AI smart NIC enhances overall training performance by 1.6x at 6 nodes, with an estimated 2.5x performance improvement at 32 nodes, compared to the baseline system using conventional NICs.
arXiv Detail & Related papers (2022-04-22T21:57:00Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - High-Performance FPGA-based Accelerator for Bayesian Recurrent Neural
Networks [2.0631735969348064]
We propose an FPGA-based hardware design to accelerate Bayesian LSTM-based RNNs.
Compared with GPU implementation, our FPGA-based design can achieve up to 10 times speedup with nearly 106 times higher energy efficiency.
arXiv Detail & Related papers (2021-06-04T14:30:39Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.