Harnessing FPGA Technology for Enhanced Biomedical Computation
- URL: http://arxiv.org/abs/2311.12439v1
- Date: Tue, 21 Nov 2023 08:51:58 GMT
- Title: Harnessing FPGA Technology for Enhanced Biomedical Computation
- Authors: Nisanur Alici, Kayode Inadagbo, Murat Isik
- Abstract summary: This research delves into sophisticated neural network frameworks like CNN, Recurrent Neural Networks (RNN), Long Short-Term Memory Networks (LSTMs), and Deep Belief Networks (DBNs)
By evaluating performance indicators like latency and throughput, we showcase the efficacy of FPGAs in advanced biomedical computing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research delves into sophisticated neural network frameworks like
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long
Short-Term Memory Networks (LSTMs), and Deep Belief Networks (DBNs) for
improved analysis of ECG signals via Field Programmable Gate Arrays (FPGAs).
The MIT-BIH Arrhythmia Database serves as the foundation for training and
evaluating our models, with added Gaussian noise to heighten the algorithms'
resilience. The developed architectures incorporate various layers for specific
processing and categorization functions, employing strategies such as the
EarlyStopping callback and Dropout layer to prevent overfitting. Additionally,
this paper details the creation of a tailored Tensor Compute Unit (TCU)
accelerator for the PYNQ Z1 platform. It provides a thorough methodology for
implementing FPGA-based machine learning, encompassing the configuration of the
Tensil toolchain in Docker, selection of architectures, PS-PL configuration,
and the compilation and deployment of models. By evaluating performance
indicators like latency and throughput, we showcase the efficacy of FPGAs in
advanced biomedical computing. This study ultimately serves as a comprehensive
guide to optimizing neural network operations on FPGAs across various fields.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
arXiv Detail & Related papers (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
We propose a new smart network interface card (NIC) for distributed AI training systems using field-programmable gate arrays (FPGAs)
Our proposed FPGA-based AI smart NIC enhances overall training performance by 1.6x at 6 nodes, with an estimated 2.5x performance improvement at 32 nodes, compared to the baseline system using conventional NICs.
arXiv Detail & Related papers (2022-04-22T21:57:00Z) - N3H-Core: Neuron-designed Neural Network Accelerator via FPGA-based
Heterogeneous Computing Cores [26.38812379700231]
We develop an FPGA-based heterogeneous computing system for neural network acceleration.
The proposed accelerator consists of DSP- and LUT-based GEneral Matrix-Multiplication (GEMM) computing cores.
Our design outperforms the state-of-the-art Mix&Match design with latency reduced by 1.12-1.32x with higher inference accuracy.
arXiv Detail & Related papers (2021-12-15T15:12:00Z) - High-Performance FPGA-based Accelerator for Bayesian Recurrent Neural
Networks [2.0631735969348064]
We propose an FPGA-based hardware design to accelerate Bayesian LSTM-based RNNs.
Compared with GPU implementation, our FPGA-based design can achieve up to 10 times speedup with nearly 106 times higher energy efficiency.
arXiv Detail & Related papers (2021-06-04T14:30:39Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Graph Neural Networks for Leveraging Industrial Equipment Structure: An
application to Remaining Useful Life Estimation [21.297461316329453]
We propose to capture the structure of a complex equipment in the form of a graph, and use graph neural networks (GNNs) to model multi-sensor time-series data.
We observe that the proposed GNN-based RUL estimation model compares favorably to several strong baselines from literature such as those based on RNNs and CNNs.
arXiv Detail & Related papers (2020-06-30T06:38:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.