論文の概要: Communicative Agents for Software Development
- arxiv url: http://arxiv.org/abs/2307.07924v2
- Date: Tue, 18 Jul 2023 09:51:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 11:32:01.370291
- Title: Communicative Agents for Software Development
- Title(参考訳): ソフトウェア開発のためのコミュニケーションエージェント
- Authors: Chen Qian and Xin Cong and Cheng Yang and Weize Chen and Yusheng Su
and Juyuan Xu and Zhiyuan Liu and Maosong Sun
- Abstract要約: ChatDevはチャットを利用した仮想ソフトウェア開発会社で、確立したウォーターフォールモデルを反映している。
ChatDev氏は開発プロセスを4つの異なる時系列段階(設計、コーディング、テスト、文書化)に分けている。
- 参考スコア(独自算出の注目度): 75.82538376928096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software engineering is a domain characterized by intricate decision-making
processes, often relying on nuanced intuition and consultation. Recent
advancements in deep learning have started to revolutionize software
engineering practices through elaborate designs implemented at various stages
of software development. In this paper, we present an innovative paradigm that
leverages large language models (LLMs) throughout the entire software
development process, streamlining and unifying key processes through natural
language communication, thereby eliminating the need for specialized models at
each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered
software development company that mirrors the established waterfall model,
meticulously dividing the development process into four distinct chronological
stages: designing, coding, testing, and documenting. Each stage engages a team
of agents, such as programmers, code reviewers, and test engineers, fostering
collaborative dialogue and facilitating a seamless workflow. The chat chain
acts as a facilitator, breaking down each stage into atomic subtasks. This
enables dual roles, allowing for proposing and validating solutions through
context-aware communication, leading to efficient resolution of specific
subtasks. The instrumental analysis of ChatDev highlights its remarkable
efficacy in software generation, enabling the completion of the entire software
development process in under seven minutes at a cost of less than one dollar.
It not only identifies and alleviates potential vulnerabilities but also
rectifies potential hallucinations while maintaining commendable efficiency and
cost-effectiveness. The potential of ChatDev unveils fresh possibilities for
integrating LLMs into the realm of software development.
- Abstract(参考訳): ソフトウェア工学は複雑な意思決定プロセスによって特徴づけられる領域であり、しばしば微妙な直観とコンサルティングに依存している。
ディープラーニングの最近の進歩は、ソフトウェア開発のさまざまなステージで実装された精巧な設計を通じて、ソフトウェアエンジニアリングプラクティスを革新し始めている。
本稿では,ソフトウェア開発プロセス全体を通じて大規模言語モデル(LLM)を活用し,自然言語通信によるキープロセスの合理化と統一を実現し,各フェーズにおける特化モデルの必要性を解消する,革新的なパラダイムを提案する。
このパラダイムの中核であるChatDevは、確立したウォーターフォールモデルを模倣し、開発プロセスを慎重に4つの異なる時系列ステージ(設計、コーディング、テスト、ドキュメント)に分割する仮想チャットベースのソフトウェア開発会社です。
各ステージはプログラマ、コードレビュアー、テストエンジニアといったエージェントのチームが参加し、共同対話を促進し、シームレスなワークフローを促進する。
チャットチェーンはファシリテーターとして働き、各ステージをアトミックなサブタスクに分解する。
これによりデュアルロールが可能になり、コンテキスト認識通信によるソリューションの提案と検証が可能になり、特定のサブタスクの効率的な解決につながる。
ChatDevのインストゥルメンタル分析は、ソフトウェア生成における顕著な効果を強調し、1ドル以下のコストで、ソフトウェア開発プロセス全体の完了を7分以内で可能にする。
潜在的な脆弱性を特定し、緩和するだけでなく、満足できる効率とコスト効率を維持しながら、潜在的な幻覚を是正する。
ChatDevのポテンシャルは、LLMをソフトウェア開発領域に統合する新たな可能性を明らかにしている。
関連論文リスト
- A Transformer-Based Multi-Stream Approach for Isolated Iranian Sign Language Recognition [0.0]
本研究の目的は,イラン手話語をトランスフォーマーなどの最新のディープラーニングツールの助けを借りて認識することである。
使用されるデータセットには、大学などの学術環境で頻繁に使用されるイラン手話101語が含まれている。
論文 参考訳(メタデータ) (2024-06-27T06:54:25Z) - Multi-Agent Software Development through Cross-Team Collaboration [30.88149502999973]
ソフトウェア開発のためのスケーラブルなマルチチームフレームワークである、クロスチームコラボレーション(CTC)を紹介します。
CTCは、組織されたチームがさまざまな決定を共同で提案し、洞察とコミュニケーションすることを可能にする。
その結果,最先端のベースラインに比べて品質が顕著に向上した。
論文 参考訳(メタデータ) (2024-06-13T10:18:36Z) - A Framework to Model ML Engineering Processes [1.9744907811058787]
機械学習(ML)ベースのシステムの開発は複雑で、多様なスキルセットを持つ複数の学際的なチームが必要である。
現在のプロセスモデリング言語は、そのようなシステムの開発を説明するには適していない。
ドメイン固有言語を中心に構築されたMLベースのソフトウェア開発プロセスのモデリングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-04-29T09:17:36Z) - Exploring Interaction Patterns for Debugging: Enhancing Conversational
Capabilities of AI-assistants [18.53732314023887]
大規模言語モデル(LLM)は、プログラマが様々なソフトウェア開発タスクの自然言語説明を得ることを可能にする。
LLMはしばしば十分な文脈なしに行動し、暗黙の仮定や不正確な反応を引き起こす。
本稿では,対話パターンと会話分析からインスピレーションを得て,デバッグのための対話型AIアシスタントRobinを設計する。
論文 参考訳(メタデータ) (2024-02-09T07:44:27Z) - Lemur: Harmonizing Natural Language and Code for Language Agents [105.43564788499901]
自然言語とコーディング機能の両方に最適化されたオープンソースの言語モデルであるLemurとLemur-Chatを紹介する。
我々のモデルは、様々なテキストおよびコーディングベンチマークで最先端の平均性能を達成する。
自然言語とプログラミング言語の調和により、Lemur-Chatはエージェント能力に関するプロプライエタリなモデルとのギャップを著しく狭めることができる。
論文 参考訳(メタデータ) (2023-10-10T17:57:45Z) - PwR: Exploring the Role of Representations in Conversational Programming [17.838776812138626]
PwR(Programming with Representations)は、自然言語でシステムの理解をユーザに伝えるために表現を使用する手法である。
その結果,表現は理解可能性を大幅に向上させ,参加者の間にエージェンシーの感覚を植え付けることができた。
論文 参考訳(メタデータ) (2023-09-18T05:38:23Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
マルチターンインターリーブ型インストラクションフォロー機能を備えた,より大規模な言語モデルを実現するための,ほとんどアノテーションのないフレームワークであるTextBindを紹介する。
提案手法では,画像キャプチャペアのみが必要であり,言語モデルからマルチターンマルチモーダル・インストラクション・レスポンス・会話を生成する。
そこで我々は,画像エンコーダとデコーダモデルをシームレスに統合する言語モデル中心アーキテクチャであるMIMを考案した。
論文 参考訳(メタデータ) (2023-09-14T15:34:01Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUGは、デジタルヒューマンアプリケーションのための中国のオープンドメイン対話システムである。
モデルネームは, 自動評価と人的評価の両方において, 最先端の中国語対話システムより優れていることを示す。
高速な推論でスマートスピーカーやインスタントメッセージアプリケーションのような実世界のアプリケーションにモデルネームをデプロイします。
論文 参考訳(メタデータ) (2023-04-16T18:16:35Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。