論文の概要: CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society
- arxiv url: http://arxiv.org/abs/2303.17760v2
- Date: Thu, 2 Nov 2023 17:34:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 17:55:32.398598
- Title: CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society
- Title(参考訳): CAMEL:大規模言語モデル社会の「ミンド」探索のためのコミュニケーションエージェント
- Authors: Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii
Khizbullin, Bernard Ghanem
- Abstract要約: 本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
- 参考スコア(独自算出の注目度): 58.04479313658851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of chat-based language models has led to remarkable
progress in complex task-solving. However, their success heavily relies on
human input to guide the conversation, which can be challenging and
time-consuming. This paper explores the potential of building scalable
techniques to facilitate autonomous cooperation among communicative agents, and
provides insight into their "cognitive" processes. To address the challenges of
achieving autonomous cooperation, we propose a novel communicative agent
framework named role-playing. Our approach involves using inception prompting
to guide chat agents toward task completion while maintaining consistency with
human intentions. We showcase how role-playing can be used to generate
conversational data for studying the behaviors and capabilities of a society of
agents, providing a valuable resource for investigating conversational language
models. In particular, we conduct comprehensive studies on
instruction-following cooperation in multi-agent settings. Our contributions
include introducing a novel communicative agent framework, offering a scalable
approach for studying the cooperative behaviors and capabilities of multi-agent
systems, and open-sourcing our library to support research on communicative
agents and beyond: https://github.com/camel-ai/camel.
- Abstract(参考訳): チャットベースの言語モデルの急速な進歩は、複雑なタスク解決の著しい進歩をもたらした。
しかし、彼らの成功は会話を導くための人間の入力に大きく依存しています。
本稿では,コミュニケーションエージェント間の自律的協調を促進するスケーラブルな手法の構築の可能性について検討し,その「認知的」プロセスについて考察する。
自律的な協調を実現するための課題を解決するために,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
我々のアプローチは、人間の意図と整合性を維持しながら、チャットエージェントをタスク完了に向けて誘導するインセプションプロンプトの使用である。
エージェントの社会の行動と能力を研究するために,ロールプレイングが会話データを生成する方法を紹介し,会話言語モデルを研究する上で貴重な資源を提供する。
特に,マルチエージェント環境における命令追従協調に関する包括的研究を行う。
コントリビューションには、新しいコミュニケーションエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供、コミュニケーションエージェントの研究を支援するライブラリのオープンソース化などが含まれています。
関連論文リスト
- COMMA: A Communicative Multimodal Multi-Agent Benchmark [7.831385481814481]
本稿では,言語コミュニケーションによるマルチモーダルマルチエージェントシステムの協調性能を評価するための新しいベンチマークを提案する。
オープンソースモデルとクローズドソースモデルを用いてエージェントエージェントとエージェント-ヒューマンのコラボレーションをテストすることにより、最先端モデルにおける驚くほどの弱点が明らかとなった。
論文 参考訳(メタデータ) (2024-10-10T02:49:47Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
この調査は、目標指向の対話エージェントを評価するための、関連するタスクと環境をコンパイルする。
関連リソースの最新のコンパイルは、プロジェクトのWebサイトにある。
論文 参考訳(メタデータ) (2024-09-27T08:17:53Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Verco: Learning Coordinated Verbal Communication for Multi-agent Reinforcement Learning [42.27106057372819]
本稿では,大規模言語モデルをエージェントに組み込むマルチエージェント強化学習アルゴリズムを提案する。
フレームワークにはメッセージモジュールとアクションモジュールがある。
オーバークッキングゲームで行った実験は,既存の手法の学習効率と性能を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2024-04-27T05:10:33Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
多くの現実世界の問題は、複数の自律エージェントの調整を必要とする。
最近の研究は、複雑なマルチエージェント協調を可能にする明示的なコミュニケーション戦略を学ぶためのグラフニューラルネットワーク(GNN)の約束を示している。
一つの利己的なエージェントが高度に操作的なコミュニケーション戦略を学習し、協調的なエージェントチームを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-08-06T12:48:08Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
我々はエージェントエージェントがエージェントエージェントコミュニケーションの事前学習を可能にするために、個別推論通信(I2C)を提案する。
先行知識は因果推論によって学習され、フィードフォワードニューラルネットワークによって実現される。
I2Cは通信オーバーヘッドを減らすだけでなく、様々なマルチエージェント協調シナリオのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-11T14:07:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。