論文の概要: ChatDev: Communicative Agents for Software Development
- arxiv url: http://arxiv.org/abs/2307.07924v5
- Date: Wed, 5 Jun 2024 13:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 04:26:20.261534
- Title: ChatDev: Communicative Agents for Software Development
- Title(参考訳): ChatDev: ソフトウェア開発のためのコミュニケーションエージェント
- Authors: Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, Maosong Sun,
- Abstract要約: ChatDevはチャットを利用したソフトウェア開発フレームワークで、特別なエージェントがコミュニケーション方法についてガイドされる。
これらのエージェントは、統一された言語ベースのコミュニケーションを通じて、設計、コーディング、テストフェーズに積極的に貢献する。
- 参考スコア(独自算出の注目度): 84.90400377131962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software development is a complex task that necessitates cooperation among multiple members with diverse skills. Numerous studies used deep learning to improve specific phases in a waterfall model, such as design, coding, and testing. However, the deep learning model in each phase requires unique designs, leading to technical inconsistencies across various phases, which results in a fragmented and ineffective development process. In this paper, we introduce ChatDev, a chat-powered software development framework in which specialized agents driven by large language models (LLMs) are guided in what to communicate (via chat chain) and how to communicate (via communicative dehallucination). These agents actively contribute to the design, coding, and testing phases through unified language-based communication, with solutions derived from their multi-turn dialogues. We found their utilization of natural language is advantageous for system design, and communicating in programming language proves helpful in debugging. This paradigm demonstrates how linguistic communication facilitates multi-agent collaboration, establishing language as a unifying bridge for autonomous task-solving among LLM agents. The code and data are available at https://github.com/OpenBMB/ChatDev.
- Abstract(参考訳): ソフトウェア開発は、多様なスキルを持つ複数のメンバ間の協力を必要とする複雑なタスクです。
多くの研究が、デザイン、コーディング、テストなど、ウォーターフォールモデルの特定のフェーズを改善するためにディープラーニングを使用していた。
しかし、各フェーズのディープラーニングモデルにはユニークな設計が必要であり、様々なフェーズにわたる技術的不整合が生じ、断片化され、非効率な開発プロセスがもたらされる。
本稿では,大規模言語モデル(LLM)によって駆動される特殊なエージェントを(チャットチェーンを介して)コミュニケーションする方法と(コミュニケーション脱ハロシン化を介して)コミュニケーションする方法でガイドするチャット駆動ソフトウェア開発フレームワークChatDevを紹介する。
これらのエージェントは、言語ベースの統一コミュニケーションを通じて設計、コーディング、テストフェーズに積極的に貢献する。
自然言語の利用はシステム設計に有利であり、プログラミング言語でのコミュニケーションはデバッグに役立ちます。
このパラダイムは,LLMエージェント間の自律的タスク解決のための統合ブリッジとして,言語コミュニケーションが多エージェント協調を促進することを示す。
コードとデータはhttps://github.com/OpenBMB/ChatDevで公開されている。
関連論文リスト
- A Transformer-Based Multi-Stream Approach for Isolated Iranian Sign Language Recognition [0.0]
本研究の目的は,イラン手話語をトランスフォーマーなどの最新のディープラーニングツールの助けを借りて認識することである。
使用されるデータセットには、大学などの学術環境で頻繁に使用されるイラン手話101語が含まれている。
論文 参考訳(メタデータ) (2024-06-27T06:54:25Z) - Multi-Agent Software Development through Cross-Team Collaboration [30.88149502999973]
ソフトウェア開発のためのスケーラブルなマルチチームフレームワークである、クロスチームコラボレーション(CTC)を紹介します。
CTCは、組織されたチームがさまざまな決定を共同で提案し、洞察とコミュニケーションすることを可能にする。
その結果,最先端のベースラインに比べて品質が顕著に向上した。
論文 参考訳(メタデータ) (2024-06-13T10:18:36Z) - A Framework to Model ML Engineering Processes [1.9744907811058787]
機械学習(ML)ベースのシステムの開発は複雑で、多様なスキルセットを持つ複数の学際的なチームが必要である。
現在のプロセスモデリング言語は、そのようなシステムの開発を説明するには適していない。
ドメイン固有言語を中心に構築されたMLベースのソフトウェア開発プロセスのモデリングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-04-29T09:17:36Z) - Exploring Interaction Patterns for Debugging: Enhancing Conversational
Capabilities of AI-assistants [18.53732314023887]
大規模言語モデル(LLM)は、プログラマが様々なソフトウェア開発タスクの自然言語説明を得ることを可能にする。
LLMはしばしば十分な文脈なしに行動し、暗黙の仮定や不正確な反応を引き起こす。
本稿では,対話パターンと会話分析からインスピレーションを得て,デバッグのための対話型AIアシスタントRobinを設計する。
論文 参考訳(メタデータ) (2024-02-09T07:44:27Z) - Lemur: Harmonizing Natural Language and Code for Language Agents [105.43564788499901]
自然言語とコーディング機能の両方に最適化されたオープンソースの言語モデルであるLemurとLemur-Chatを紹介する。
我々のモデルは、様々なテキストおよびコーディングベンチマークで最先端の平均性能を達成する。
自然言語とプログラミング言語の調和により、Lemur-Chatはエージェント能力に関するプロプライエタリなモデルとのギャップを著しく狭めることができる。
論文 参考訳(メタデータ) (2023-10-10T17:57:45Z) - PwR: Exploring the Role of Representations in Conversational Programming [17.838776812138626]
PwR(Programming with Representations)は、自然言語でシステムの理解をユーザに伝えるために表現を使用する手法である。
その結果,表現は理解可能性を大幅に向上させ,参加者の間にエージェンシーの感覚を植え付けることができた。
論文 参考訳(メタデータ) (2023-09-18T05:38:23Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
マルチターンインターリーブ型インストラクションフォロー機能を備えた,より大規模な言語モデルを実現するための,ほとんどアノテーションのないフレームワークであるTextBindを紹介する。
提案手法では,画像キャプチャペアのみが必要であり,言語モデルからマルチターンマルチモーダル・インストラクション・レスポンス・会話を生成する。
そこで我々は,画像エンコーダとデコーダモデルをシームレスに統合する言語モデル中心アーキテクチャであるMIMを考案した。
論文 参考訳(メタデータ) (2023-09-14T15:34:01Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUGは、デジタルヒューマンアプリケーションのための中国のオープンドメイン対話システムである。
モデルネームは, 自動評価と人的評価の両方において, 最先端の中国語対話システムより優れていることを示す。
高速な推論でスマートスピーカーやインスタントメッセージアプリケーションのような実世界のアプリケーションにモデルネームをデプロイします。
論文 参考訳(メタデータ) (2023-04-16T18:16:35Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。