論文の概要: GastroVision: A Multi-class Endoscopy Image Dataset for Computer Aided
Gastrointestinal Disease Detection
- arxiv url: http://arxiv.org/abs/2307.08140v2
- Date: Thu, 17 Aug 2023 18:21:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 22:54:15.997081
- Title: GastroVision: A Multi-class Endoscopy Image Dataset for Computer Aided
Gastrointestinal Disease Detection
- Title(参考訳): gastrovision: 消化器疾患検出のためのマルチクラス内視鏡画像データセット
- Authors: Debesh Jha, Vanshali Sharma, Neethi Dasu, Nikhil Kumar Tomar, Steven
Hicks, M.K. Bhuyan, Pradip K. Das, Michael A. Riegler, P{\aa}l Halvorsen,
Ulas Bagci, Thomas de Lange
- Abstract要約: 本データセットは, 解剖学的所見, 病理所見, ポリープ除去症例, 正常所見を含む。
経験豊富なGI内科医によって注釈され、検証された。
我々のデータセットは、GI病の検出と分類のためのAIベースのアルゴリズムの開発を促進することができると信じている。
- 参考スコア(独自算出の注目度): 6.231109933741383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating real-time artificial intelligence (AI) systems in clinical
practices faces challenges such as scalability and acceptance. These challenges
include data availability, biased outcomes, data quality, lack of transparency,
and underperformance on unseen datasets from different distributions. The
scarcity of large-scale, precisely labeled, and diverse datasets are the major
challenge for clinical integration. This scarcity is also due to the legal
restrictions and extensive manual efforts required for accurate annotations
from clinicians. To address these challenges, we present \textit{GastroVision},
a multi-center open-access gastrointestinal (GI) endoscopy dataset that
includes different anatomical landmarks, pathological abnormalities, polyp
removal cases and normal findings (a total of 27 classes) from the GI tract.
The dataset comprises 8,000 images acquired from B{\ae}rum Hospital in Norway
and Karolinska University Hospital in Sweden and was annotated and verified by
experienced GI endoscopists. Furthermore, we validate the significance of our
dataset with extensive benchmarking based on the popular deep learning based
baseline models. We believe our dataset can facilitate the development of
AI-based algorithms for GI disease detection and classification. Our dataset is
available at \url{https://osf.io/84e7f/}.
- Abstract(参考訳): 臨床実践におけるリアルタイム人工知能(AI)システムの統合は、スケーラビリティや受け入れといった課題に直面している。
これらの課題には、データ可用性、偏りのある結果、データ品質、透明性の欠如、異なるディストリビューションからの見えないデータセットの低パフォーマンスなどが含まれる。
大規模で正確にラベル付けされた多様なデータセットの不足は、臨床統合の大きな課題である。
この不足は、臨床医の正確な注釈に必要な法的制限と広範な手作業によるものである。
これらの課題に対処するため,多施設の腹腔鏡検査データセットであるtextit{GastroVision} を提出し,解剖学的所見,病理学的異常,ポリープ除去症例,正常所見(合計27クラス)について検討した。
データセットはノルウェーのB{\ae}rum病院とスウェーデンのカロリンスカ大学病院から8000枚の画像からなり、経験豊富なGI内科医によって注釈され、検証された。
さらに,一般的なディープラーニングベースラインモデルに基づく広範なベンチマークを用いて,データセットの意義を検証する。
我々のデータセットは、GI病の検出と分類のためのAIベースのアルゴリズムの開発を促進することができると信じている。
データセットは \url{https://osf.io/84e7f/} で利用可能です。
関連論文リスト
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - Detecting Unforeseen Data Properties with Diffusion Autoencoder Embeddings using Spine MRI data [7.757515290013924]
深層学習は、診断と予後を改善するために大規模なデータセットを利用することによって、医療画像に大きく貢献してきた。
大規模なデータセットには、主題の選択と取得による固有のエラーが伴うことが多い。
拡散オートエンコーダの埋め込みによるデータ特性とバイアスの解明と理解について検討する。
論文 参考訳(メタデータ) (2024-10-14T07:24:26Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - ISLES 2024: The first longitudinal multimodal multi-center real-world dataset in (sub-)acute stroke [2.7919032539697444]
ストロークは世界的死亡率と死亡率の主要な原因であり、社会経済的重荷を負っている。
脳卒中画像から有意義で再現可能な脳機能のモデルを抽出できる機械学習アルゴリズムを開発する。
このデータセットは, 血管造影と灌流による急性CT像, 2~9日間の経過観察, 急性期, 慢性期の臨床データなど, 経時的脳梗塞の包括的データとして初めて提供された。
論文 参考訳(メタデータ) (2024-08-20T18:59:52Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
本研究は,医療診断用データセットと信頼性ツールを提供することにより,このギャップを埋めることを目的としている。
330個の注記結節(結節は束縛箱とラベル付けされている)を95名の別患者から抽出し,CT画像の多彩なデータセットを収集した。
これらの有望な結果は、データセットが実現可能であり、さらにインテリジェントな補助診断を容易にすることを証明している。
論文 参考訳(メタデータ) (2024-06-26T06:39:11Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
アイゲイズガイドマルチモーダルアライメント(EGMA)フレームワークは、アイゲイズデータを利用して、医用視覚的特徴とテキスト的特徴のアライメントを改善する。
我々は4つの医療データセット上で画像分類と画像テキスト検索の下流タスクを行う。
論文 参考訳(メタデータ) (2024-03-19T03:59:14Z) - Real-World Multi-Domain Data Applications for Generalizations to
Clinical Settings [1.508558791031741]
ディープラーニングモデルは、臨床試験のような人工的な設定から標準化されたデータセットでトレーニングされた場合、うまく機能する。
マルチドメイン実世界のデータセットに転送学習を用いた自己教師型アプローチを用いることで、標準化されたデータセットに対して16%の相対的改善が達成できることを示す。
論文 参考訳(メタデータ) (2020-07-24T17:41:23Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。