論文の概要: Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning
- arxiv url: http://arxiv.org/abs/2403.12416v3
- Date: Fri, 14 Jun 2024 03:18:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:42:49.685966
- Title: Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning
- Title(参考訳): 医用表現学習のための視線ガイド付きマルチモーダルアライメント
- Authors: Chong Ma, Hanqi Jiang, Wenting Chen, Yiwei Li, Zihao Wu, Xiaowei Yu, Zhengliang Liu, Lei Guo, Dajiang Zhu, Tuo Zhang, Dinggang Shen, Tianming Liu, Xiang Li,
- Abstract要約: アイゲイズガイドマルチモーダルアライメント(EGMA)フレームワークは、アイゲイズデータを利用して、医用視覚的特徴とテキスト的特徴のアライメントを改善する。
我々は4つの医療データセット上で画像分類と画像テキスト検索の下流タスクを行う。
- 参考スコア(独自算出の注目度): 65.54680361074882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the medical multi-modal frameworks, the alignment of cross-modality features presents a significant challenge. However, existing works have learned features that are implicitly aligned from the data, without considering the explicit relationships in the medical context. This data-reliance may lead to low generalization of the learned alignment relationships. In this work, we propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of medical visual and textual features. We explore the natural auxiliary role of radiologists' eye-gaze data in aligning medical images and text, and introduce a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. We conduct downstream tasks of image classification and image-text retrieval on four medical datasets, where EGMA achieved state-of-the-art performance and stronger generalization across different datasets. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal alignment framework.
- Abstract(参考訳): 医療用マルチモーダルフレームワークでは、クロスモーダルな特徴のアライメントが大きな課題となっている。
しかし、既存の研究は、医学的文脈における明確な関係を考慮せずに、データから暗黙的に一致した特徴を学習してきた。
このデータ信頼性は、学習されたアライメント関係の低一般化につながる可能性がある。
本研究では,医用視覚とテキストのアライメントを改善するために,アイ・ゲイズ・ガイドド・マルチモーダル・アライメント(EGMA)フレームワークを提案する。
医用画像とテキストの整列における放射線医の眼球運動データの自然な補助的役割について検討し,診断評価中に放射線医が同期的に収集した眼球運動データを用いて新しいアプローチを提案する。
我々は,4つの医療データセットに対して,画像分類と画像テキスト検索の下流タスクを行い,EGMAは最先端のパフォーマンスを達成し,異なるデータセットをまたいだより強力な一般化を実現した。
さらに、様々な眼球運動データがモデル性能に与える影響について検討し、これらの補助データをマルチモーダルアライメントフレームワークに統合する可能性と有用性を強調した。
関連論文リスト
- ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - GEM: Context-Aware Gaze EstiMation with Visual Search Behavior Matching for Chest Radiograph [32.1234295417225]
本稿では,放射線科医が収集した視線データを用いて視覚的な探索行動パターンをシミュレートする,文脈対応型Gaze EstiMation (GEM) ネットワークを提案する。
コンテキスト認識モジュール、視覚行動グラフ構築、視覚行動マッチングで構成される。
4つの公開データセットの実験は、既存の方法よりもGEMの方が優れていることを示している。
論文 参考訳(メタデータ) (2024-08-10T09:46:25Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
EHRの値と測定値に画像処理を条件付け,臨床画像と表層データを融合させるハイパーネットワークに基づく新しいフレームワークを提案する。
我々は, 単一モダリティモデルと最先端MRI-タブラルデータ融合法の両方に優れることを示す。
論文 参考訳(メタデータ) (2024-03-20T05:50:04Z) - AliFuse: Aligning and Fusing Multi-modal Medical Data for Computer-Aided
Diagnosis [1.9450973046619378]
マルチモーダル医療データの整合と融合のためのトランスフォーマーベースのフレームワークであるAlifuseを提案する。
我々はAlifuseを用いてアルツハイマー病を分類し、5つのパブリックデータセット上で最先端のパフォーマンスを得る。
論文 参考訳(メタデータ) (2024-01-02T07:28:21Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
ドメイン転送ネットワーク(C2M-DoT)を用いたクロスモーダルなマルチビュー医療レポート生成を提案する。
C2M-DoTは、すべてのメトリクスで最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2023-10-09T02:31:36Z) - KiUT: Knowledge-injected U-Transformer for Radiology Report Generation [10.139767157037829]
X線画像から臨床的正確で一貫性のある段落を自動的に生成することを目的とする。
知識注入型U-Transformer (KiUT) を提案する。
論文 参考訳(メタデータ) (2023-06-20T07:27:28Z) - Cross-modal Memory Networks for Radiology Report Generation [30.13916304931662]
ラジオロジーレポート生成のためのエンコーダデコーダフレームワークを強化するために,クロスモーダルメモリネットワーク(CMN)を提案する。
本モデルでは,放射線画像やテキストからの情報の整合性が向上し,臨床指標の精度向上に寄与する。
論文 参考訳(メタデータ) (2022-04-28T02:32:53Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
本稿では,Align Hierarchical Attention (AHA)とMulti-Grained Transformer (MGT)モジュールを含むAlign Transformerフレームワークを提案する。
パブリックなIU-XrayとMIMIC-CXRデータセットの実験は、AlignTransformerが2つのデータセットの最先端メソッドと競合する結果が得られることを示している。
論文 参考訳(メタデータ) (2022-03-18T13:43:53Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。