Enhancing Cross-task Transfer of Large Language Models via Activation Steering
- URL: http://arxiv.org/abs/2507.13236v1
- Date: Thu, 17 Jul 2025 15:47:22 GMT
- Title: Enhancing Cross-task Transfer of Large Language Models via Activation Steering
- Authors: Xinyu Tang, Zhihao Lv, Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, Zujie Wen, Zhiqiang Zhang, Jun Zhou,
- Abstract summary: Cross-task in-context learning offers a direct solution for transferring knowledge across tasks.<n>We investigate whether cross-task transfer can be achieved via latent space steering without parameter updates or input expansion.<n>We propose a novel Cross-task Activation Steering Transfer framework that enables effective transfer by manipulating the model's internal activation states.
- Score: 75.41750053623298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown impressive abilities in leveraging pretrained knowledge through prompting, but they often struggle with unseen tasks, particularly in data-scarce scenarios. While cross-task in-context learning offers a direct solution for transferring knowledge across tasks, it still faces critical challenges in terms of robustness, scalability, and efficiency. In this paper, we investigate whether cross-task transfer can be achieved via latent space steering without parameter updates or input expansion. Through an analysis of activation patterns in the latent space of LLMs, we observe that the enhanced activations induced by in-context examples have consistent patterns across different tasks. Inspired by these findings, we propose CAST, a novel Cross-task Activation Steering Transfer framework that enables effective transfer by manipulating the model's internal activation states. Our approach first selects influential and diverse samples from high-resource tasks, then utilizes their contrastive representation-enhanced activations to adapt LLMs to low-resource tasks. Extensive experiments across both cross-domain and cross-lingual transfer settings show that our method outperforms competitive baselines and demonstrates superior scalability and lower computational costs.
Related papers
- FAST: Similarity-based Knowledge Transfer for Efficient Policy Learning [57.4737157531239]
Transfer Learning offers the potential to accelerate learning by transferring knowledge across tasks.<n>It faces critical challenges such as negative transfer, domain adaptation and inefficiency in selecting solid source policies.<n>In this work we challenge the key issues in TL to improve knowledge transfer, agents performance across tasks and reduce computational costs.
arXiv Detail & Related papers (2025-07-27T22:21:53Z) - Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study [11.452011929848844]
This study proposes a novel meta-surrogate framework to assist many-task optimization.<n>We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems.<n>Our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness.
arXiv Detail & Related papers (2025-03-11T11:13:11Z) - Exploiting Task Relationships for Continual Learning Using Transferability-Aware Task Embeddings [8.814732457885022]
Continual learning (CL) has been a critical topic in contemporary deep neural network applications.<n>We propose a transferability-aware task embedding, termed H-embedding, and construct a hypernet framework under its guidance.
arXiv Detail & Related papers (2025-02-17T09:52:19Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.<n>We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.<n>We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities.
This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks.
We show that cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting.
arXiv Detail & Related papers (2024-05-17T05:20:49Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
We study the transferability between 33 NLP tasks across three broad classes of problems.
Our results show that transfer learning is more beneficial than previously thought.
We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task.
arXiv Detail & Related papers (2020-05-02T09:39:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.