When Large Language Models Meet Optical Networks: Paving the Way for Automation
- URL: http://arxiv.org/abs/2405.17441v2
- Date: Tue, 25 Jun 2024 03:23:00 GMT
- Title: When Large Language Models Meet Optical Networks: Paving the Way for Automation
- Authors: Danshi Wang, Yidi Wang, Xiaotian Jiang, Yao Zhang, Yue Pang, Min Zhang,
- Abstract summary: We propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer.
The proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization.
The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
- Score: 17.4503217818141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the advent of GPT, large language models (LLMs) have brought about revolutionary advancements in all walks of life. As a superior natural language processing (NLP) technology, LLMs have consistently achieved state-of-the-art performance on numerous areas. However, LLMs are considered to be general-purpose models for NLP tasks, which may encounter challenges when applied to complex tasks in specialized fields such as optical networks. In this study, we propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer through an LLM-driven agent (AI-Agent) deployed in the control layer. The AI-Agent can leverage external tools and extract domain knowledge from a comprehensive resource library specifically established for optical networks. This is achieved through user input and well-crafted prompts, enabling the generation of control instructions and result representations for autonomous operation and maintenance in optical networks. To improve LLM's capability in professional fields and stimulate its potential on complex tasks, the details of performing prompt engineering, establishing domain knowledge library, and implementing complex tasks are illustrated in this study. Moreover, the proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization. The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
Related papers
- Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Semantic Routing for Enhanced Performance of LLM-Assisted Intent-Based 5G Core Network Management and Orchestration [10.981422497762837]
Large language models (LLMs) are rapidly emerging in Artificial Intelligence (AI) applications.
This paper presents semantic routing to achieve enhanced performance in intent-based management and orchestration of 5G core networks.
arXiv Detail & Related papers (2024-04-24T13:34:20Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
This paper is the first to conduct an exhaustive study on Large Language Models' comprehension of computer networks.
We evaluate our framework on multiple computer networks employing proprietary (e.g., GPT4) and open-source (e.g., Llama2) models.
arXiv Detail & Related papers (2024-04-19T07:41:54Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
Large language models (LLMs) and foundation models have been recently touted as a game-changer for 6G systems.
This paper presents a comprehensive vision on how to design universal foundation models tailored towards the deployment of artificial intelligence (AI)-native networks.
arXiv Detail & Related papers (2024-01-30T00:21:41Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
Large Language Models (LLMs) have emerged as powerful tools for various real-world applications.
Despite their prowess, intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks.
This paper proposes a structured framework tailored for LLM-based AI Agents.
arXiv Detail & Related papers (2023-08-07T09:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.