論文の概要: Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language
Models
- arxiv url: http://arxiv.org/abs/2307.08303v2
- Date: Tue, 25 Jul 2023 14:57:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 20:11:37.708977
- Title: Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language
Models
- Title(参考訳): 大規模言語モデルを用いた深度検索のためのソフトプロンプトチューニング
- Authors: Zhiyuan Peng, Xuyang Wu, Yi Fang
- Abstract要約: 本稿では,拡張Dense検索(DR)モデルのためのソフトプロンプトチューニングを提案する。
各タスクに対して,限られた真実データに基づいて,タスク固有のソフトプロンプトを最適化するために,ソフトプロンプトチューニングを利用する。
我々は、弱いタグ付きクエリの品質をさらに向上させるために、高品質な文書クエリペアを選択するフィルタを設計する。
- 参考スコア(独自算出の注目度): 10.97699341766186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense retrieval (DR) converts queries and documents into dense embeddings and
measures the similarity between queries and documents in vector space. One of
the challenges in DR is the lack of domain-specific training data. While DR
models can learn from large-scale public datasets like MS MARCO through
transfer learning, evidence shows that not all DR models and domains can
benefit from transfer learning equally. Recently, some researchers have
resorted to large language models (LLMs) to improve the zero-shot and few-shot
DR models. However, the hard prompts or human-written prompts utilized in these
works cannot guarantee the good quality of generated weak queries. To tackle
this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task,
we leverage soft prompt-tuning to optimize a task-specific soft prompt on
limited ground truth data and then prompt the LLMs to tag unlabeled documents
with weak queries, yielding enough weak document-query pairs to train
task-specific dense retrievers. We design a filter to select high-quality
example document-query pairs in the prompt to further improve the quality of
weak tagged queries. To the best of our knowledge, there is no prior work
utilizing soft prompt tuning to augment DR models. The experiments demonstrate
that SPTAR outperforms the unsupervised baselines BM25 and the recently
proposed LLMs-based augmentation method for DR.
- Abstract(参考訳): Dense Search (DR) はクエリとドキュメントを密埋め込みに変換し、ベクトル空間におけるクエリとドキュメント間の類似度を測定する。
DRの課題のひとつは、ドメイン固有のトレーニングデータがないことだ。
drモデルは、転送学習を通じてms marcoのような大規模な公開データセットから学べるが、すべてのdrモデルとドメインが等しく転送学習の恩恵を受けるわけではない。
近年、一部の研究者はゼロショットと少数ショットのDRモデルを改善するために大規模言語モデル(LLM)を活用している。
しかし、これらの作業で使われるハードプロンプトや人書きプロンプトは、生成された弱いクエリの質を保証できない。
タスク毎にソフトプロンプトチューニングを利用して、限られた基底真理データに対してタスク固有のソフトプロンプトを最適化し、llmに弱いクエリでラベルなしの文書にタグを付けるように促し、タスク固有の密集したレトリバーを訓練するのに十分な弱いドキュメントクエリペアを得る。
我々は,弱いタグ付きクエリの品質をさらに向上させるために,高品質な文書クエリペアを選択するフィルタを設計した。
私たちの知る限りでは、drモデルの強化にソフトプロンプトチューニングを利用する先行作業はありません。
この実験は、sptarが教師なしのベースラインbm25と最近提案された dr の llms ベースの拡張法よりも優れていることを示している。
関連論文リスト
- Zero-Shot Dense Retrieval with Embeddings from Relevance Feedback [17.986392250269606]
Relevance Feedback (ReDE-RF) による実文書埋め込みについて紹介する。
ReDE-RFは、関連性フィードバックにインスパイアされて、関連性推定タスクとして仮説文書生成を再構成することを提案する。
実験の結果,ReDE-RFは最先端のゼロショット高密度検索手法を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-28T17:40:40Z) - Attribute or Abstain: Large Language Models as Long Document Assistants [58.32043134560244]
LLMは人間が長い文書を扱うのを助けることができるが、幻覚で知られている。
既存の属性に対するアプローチはRAG設定でのみ評価されている。
これは、検索が不要な長いドキュメント設定とは大きく異なるが、助けになる可能性がある。
そこで本研究では,6種類の多種多様文書タスクのベンチマークであるLABと,異なる大きさの5つのLLMに対する属性に対する異なるアプローチの実験を行う。
論文 参考訳(メタデータ) (2024-07-10T16:16:02Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAGは最近、質問応答(QA)のような知識集約的なタスクにおいて、LLM(Large Language Models)のパフォーマンスを実証した。
重要な文書とクエリの間には関連性が低いものの,文書の一部とクエリを組み合わせることで,残りの文書を検索できることがわかった。
文書検索のリコールと回答の精度を向上させるために,DR-RAG(Dynamic-Relevant Retrieval-Augmented Generation)と呼ばれる2段階検索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T15:15:33Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
大規模言語モデル(LLM)の性能は,プロンプトの表現に非常に敏感である。
セマンティックに等価なケースレベルのクエリで構成される新しいベンチマークであるRobustAlpacaEvalを紹介する。
RobustAlpacaEvalとChatGPT、およびLlama、Mistral、Gemmaファミリーの6つのオープンソースLLMによる実験により、モデル性能のかなりのばらつきが明らかになった。
論文 参考訳(メタデータ) (2024-06-08T13:40:38Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language model (LLMs) は、情報検索システムによって取得された関連コンテンツを利用して正しい応答を生成する。
既存のレトリバー・サプライヤ・メソッドは、テキスト生成タスクを実行するために LLM のプロンプトに関連文書を追加するのが一般的である。
検索拡張LDMのための文書順序付けを学習するための新しいパイプライン"Reinforced Retriever-Reorder-Responder"を提案する。
論文 参考訳(メタデータ) (2024-05-04T12:59:10Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
本稿では,PmptRepsを提案する。このPmptRepsは,トレーニングを必要とせず,コーパス全体から検索できる機能である。
検索システムは、高密度テキスト埋め込みとスパースバッグ・オブ・ワード表現の両方を利用する。
論文 参考訳(メタデータ) (2024-04-29T04:51:30Z) - Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models [28.105271954633682]
本稿では,Large Language Models (LLMs) へのリーク情報の再ランク付けのための,Q-PEFT (Q-PEFT) アプローチを提案する。
クエリを使用して、入力ドキュメントから上位$kのトークンを抽出し、コンテキストのヒントとして機能します。
検索機構をマルチヘッドアテンション層に置き換えて、エンドツーエンドのトレーニングを実現し、文書中のすべてのトークンをカバーすることにより、Q-PEFTをさらに強化する。
論文 参考訳(メタデータ) (2024-04-06T06:44:41Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
本稿では,セマンティック・オーバーラップ・サマリゼーション(SOS)タスクにおいて,Large Language Models (LLM) を包括的に評価する。
本稿では, ROUGE, BERTscore, SEM-F1$などの定評ある指標を, 2種類の代替物語のデータセット上で報告する。
論文 参考訳(メタデータ) (2024-02-26T20:33:50Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) は、指数再生を必要とせず、モデルロバスト性を改善する高効率な微調整法である。
CAPOTはドキュメントエンコーダを凍結することで堅牢な検索を可能にし、クエリエンコーダはノイズの多いクエリを修正されていないルートに整列させる。
MSMARCO、Natural Questions、Trivia QAパス検索のCAPOTノイズ変動を評価し、CAPOTがオーバーヘッドを伴わないデータ増大に類似した影響があることを発見した。
論文 参考訳(メタデータ) (2023-04-06T22:16:53Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
提案手法はまず,大言語モデル (LLM) をプロンプトすることで擬似文書を生成する。
query2docは、アドホックIRデータセットでBM25のパフォーマンスを3%から15%向上させる。
また,本手法は,ドメイン内およびドメイン外の両方において,最先端の高密度検索に有効である。
論文 参考訳(メタデータ) (2023-03-14T07:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。