論文の概要: Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language Models
- arxiv url: http://arxiv.org/abs/2307.08303v5
- Date: Mon, 17 Jun 2024 04:30:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 12:50:30.060856
- Title: Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた深度検索のためのソフトプロンプトチューニング
- Authors: Zhiyuan Peng, Xuyang Wu, Qifan Wang, Yi Fang,
- Abstract要約: 本稿では,拡張Dense検索(DR)モデルのためのソフトプロンプトチューニングを提案する。
各タスクに対して,限られた真実データに基づいて,タスク固有のソフトプロンプトを最適化するために,ソフトプロンプトチューニングを利用する。
我々は、弱いタグ付きクエリの品質をさらに向上させるために、高品質な文書クエリペアを選択するフィルタを設計する。
- 参考スコア(独自算出の注目度): 29.735976068474105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.
- Abstract(参考訳): Dense Search (DR) はクエリとドキュメントを密埋め込みに変換し、ベクトル空間におけるクエリとドキュメント間の類似度を測定する。
DRの課題のひとつは、ドメイン固有のトレーニングデータがないことだ。
DRモデルは、転送学習を通じてMS MARCOのような大規模な公開データセットから学習することができるが、すべてのDRモデルやドメインが転送学習の恩恵を受けるわけではないことが証拠として示される。
近年、一部の研究者はゼロショットと少数ショットのDRモデルを改善するために大規模言語モデル(LLM)を活用している。
しかし、これらの作業で使われるハードプロンプトや人書きプロンプトは、生成された弱いクエリの質を保証できない。
そこで本研究では,DR(SPTAR)強化のためのソフトプロンプトチューニングを提案する。各タスクに対して,ソフトプロンプトチューニングを活用して,限られた真実データに基づいてタスク固有のソフトプロンプトを最適化する。
我々は、弱いタグ付きクエリの品質をさらに向上させるために、高品質な文書クエリペアを選択するフィルタを設計する。
我々の知る限り、DRモデルを増強するためにソフトプロンプトチューニングを利用する事前の作業はない。
実験により、SPTARは、教師なしベースラインBM25と、最近提案されたDRのLLMベースの拡張法よりも優れていることが示された。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAGは最近、質問応答(QA)のような知識集約的なタスクにおいて、LLM(Large Language Models)のパフォーマンスを実証した。
重要な文書とクエリの間には関連性が低いものの,文書の一部とクエリを組み合わせることで,残りの文書を検索できることがわかった。
文書検索のリコールと回答の精度を向上させるために,DR-RAG(Dynamic-Relevant Retrieval-Augmented Generation)と呼ばれる2段階検索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T15:15:33Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
大規模言語モデル(LLM)の性能は,プロンプトの表現に非常に敏感である。
セマンティックに等価なケースレベルのクエリで構成される新しいベンチマークであるRobustAlpacaEvalを紹介する。
RobustAlpacaEvalとChatGPT、およびLlama、Mistral、Gemmaファミリーの6つのオープンソースLLMによる実験により、モデル性能のかなりのばらつきが明らかになった。
論文 参考訳(メタデータ) (2024-06-08T13:40:38Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language model (LLMs) は、情報検索システムによって取得された関連コンテンツを利用して正しい応答を生成する。
既存のレトリバー・サプライヤ・メソッドは、テキスト生成タスクを実行するために LLM のプロンプトに関連文書を追加するのが一般的である。
検索拡張LDMのための文書順序付けを学習するための新しいパイプライン"Reinforced Retriever-Reorder-Responder"を提案する。
論文 参考訳(メタデータ) (2024-05-04T12:59:10Z) - Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models [28.105271954633682]
本稿では,Large Language Models (LLMs) へのリーク情報の再ランク付けのための,Q-PEFT (Q-PEFT) アプローチを提案する。
クエリを使用して、入力ドキュメントから上位$kのトークンを抽出し、コンテキストのヒントとして機能します。
検索機構をマルチヘッドアテンション層に置き換えて、エンドツーエンドのトレーニングを実現し、文書中のすべてのトークンをカバーすることにより、Q-PEFTをさらに強化する。
論文 参考訳(メタデータ) (2024-04-06T06:44:41Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
本稿では,セマンティック・オーバーラップ・サマリゼーション(SOS)タスクにおいて,Large Language Models (LLM) を包括的に評価する。
本稿では, ROUGE, BERTscore, SEM-F1$などの定評ある指標を, 2種類の代替物語のデータセット上で報告する。
論文 参考訳(メタデータ) (2024-02-26T20:33:50Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) は、指数再生を必要とせず、モデルロバスト性を改善する高効率な微調整法である。
CAPOTはドキュメントエンコーダを凍結することで堅牢な検索を可能にし、クエリエンコーダはノイズの多いクエリを修正されていないルートに整列させる。
MSMARCO、Natural Questions、Trivia QAパス検索のCAPOTノイズ変動を評価し、CAPOTがオーバーヘッドを伴わないデータ増大に類似した影響があることを発見した。
論文 参考訳(メタデータ) (2023-04-06T22:16:53Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
提案手法はまず,大言語モデル (LLM) をプロンプトすることで擬似文書を生成する。
query2docは、アドホックIRデータセットでBM25のパフォーマンスを3%から15%向上させる。
また,本手法は,ドメイン内およびドメイン外の両方において,最先端の高密度検索に有効である。
論文 参考訳(メタデータ) (2023-03-14T07:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。