論文の概要: Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems
- arxiv url: http://arxiv.org/abs/2307.08423v3
- Date: Sun, 13 Oct 2024 15:56:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 21:41:11.635017
- Title: Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems
- Title(参考訳): 量子・原子・連続系の科学のための人工知能
- Authors: Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, Shuiwang Ji,
- Abstract要約: 科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
- 参考スコア(独自算出の注目度): 268.585904751315
- License:
- Abstract: Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.
- Abstract(参考訳): 人工知能(AI)の進歩は、自然科学における新たな発見のパラダイムを加速させている。
今日、AIは自然科学を進歩させ始め、自然現象を幅広い空間的・時間的スケールで理解し、科学のためのAI(AI4Science)として知られる新しい研究分野を生み出した。
新たな研究パラダイムであるAI4Scienceは、巨大で非常に学際的な領域であるという点でユニークなものである。
したがって、この分野の統一的で技術的な扱いは、まだ困難である。
この研究は、AI4Scienceのサブ領域、すなわち量子、原子、連続系のAIに関する技術的に完全な説明を提供することを目的としている。
これらの領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解し、AI4Scienceの重要なサブ領域を形成することを目的としている。
これらの領域にフォーカスするユニークな利点は、共通の課題の集合を共有し、統一的で基礎的な扱いを可能にすることである。
重要な共通課題は、物理第一原理、特に対称性をディープラーニング手法で自然システムで捉える方法である。
対称性変換の同値性を達成するための手法について、深いが直感的な説明を提供する。
また、説明可能性、分布外一般化、基礎および大規模言語モデルによる知識伝達、不確実性定量化など、他の一般的な技術的課題についても論じる。
学習と教育を容易にするために,我々は有用なリソースのリストを分類した。
AI4Scienceをさらに進めるために、コミュニティの関心や努力がさらに高まることを期待しています。
関連論文リスト
- OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - Opportunities for machine learning in scientific discovery [16.526872562935463]
我々は、科学コミュニティが科学的な発見を達成するために機械学習技術をどのように活用できるかをレビューする。
課題は残るが、MLの原則的利用は基本的な科学的発見のための新たな道を開く。
論文 参考訳(メタデータ) (2024-05-07T09:58:02Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery
through Sophisticated AI System Technologies [116.09762105379241]
DeepSpeed4Scienceは、AIシステム技術革新を通じてユニークな機能を構築することを目指している。
我々は、構造生物学研究における2つの重要なシステム課題に対処するために、DeepSpeed4Scienceで行った初期の進歩を紹介した。
論文 参考訳(メタデータ) (2023-10-06T22:05:15Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - AI for Science: An Emerging Agenda [30.260160661295682]
本報告では,Dagtuhl Seminar 22382 "Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling"のプログラムと成果について報告する。
AIの変革的ポテンシャルは、分野にわたって広く適用可能であることに由来するもので、研究領域間での統合によってのみ達成される。
技術的な進歩に加えて、この分野における次の進歩の波は、機械学習研究者、ドメインエキスパート、市民科学者、エンジニアのコミュニティを構築することにある。
論文 参考訳(メタデータ) (2023-03-07T20:21:43Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Off-the-shelf deep learning is not enough: parsimony, Bayes and
causality [0.8602553195689513]
材料科学における深層学習の実現に向けた機会と障害について論じる。
私たちは、ディープラーニングとAIは、因果関係が知られている分野に革命をもたらすのに十分な位置にあると論じています。
論文 参考訳(メタデータ) (2020-05-04T15:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。