論文の概要: Opportunities for machine learning in scientific discovery
- arxiv url: http://arxiv.org/abs/2405.04161v1
- Date: Tue, 7 May 2024 09:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:39:54.621284
- Title: Opportunities for machine learning in scientific discovery
- Title(参考訳): 科学的発見における機械学習の可能性
- Authors: Ricardo Vinuesa, Jean Rabault, Hossein Azizpour, Stefan Bauer, Bingni W. Brunton, Arne Elofsson, Elias Jarlebring, Hedvig Kjellstrom, Stefano Markidis, David Marlevi, Paola Cinnella, Steven L. Brunton,
- Abstract要約: 我々は、科学コミュニティが科学的な発見を達成するために機械学習技術をどのように活用できるかをレビューする。
課題は残るが、MLの原則的利用は基本的な科学的発見のための新たな道を開く。
- 参考スコア(独自算出の注目度): 16.526872562935463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Technological advancements have substantially increased computational power and data availability, enabling the application of powerful machine-learning (ML) techniques across various fields. However, our ability to leverage ML methods for scientific discovery, {\it i.e.} to obtain fundamental and formalized knowledge about natural processes, is still in its infancy. In this review, we explore how the scientific community can increasingly leverage ML techniques to achieve scientific discoveries. We observe that the applicability and opportunity of ML depends strongly on the nature of the problem domain, and whether we have full ({\it e.g.}, turbulence), partial ({\it e.g.}, computational biochemistry), or no ({\it e.g.}, neuroscience) {\it a-priori} knowledge about the governing equations and physical properties of the system. Although challenges remain, principled use of ML is opening up new avenues for fundamental scientific discoveries. Throughout these diverse fields, there is a theme that ML is enabling researchers to embrace complexity in observational data that was previously intractable to classic analysis and numerical investigations.
- Abstract(参考訳): 技術的進歩は計算能力とデータ可用性を大幅に向上させ、様々な分野にわたる強力な機械学習(ML)技術の適用を可能にした。
しかし、科学的な発見のためにML手法を利用する能力、すなわち自然過程に関する基礎的で形式化された知識を得る能力は、まだ初期段階にある。
本稿では,科学コミュニティがML技術を活用して科学的発見を実現する方法について検討する。
MLの適用性と機会は,問題領域の性質に強く依存しており,完全(運転 e g },乱流),部分(運転 e g },計算生化学),No(運転 e g },神経科学)が支配方程式やシステムの物理的性質に関する知識に大きく依存している。
課題は残るが、MLの原則的利用は基本的な科学的発見のための新たな道を開く。
これらの多様な分野を通じて、MLはそれまで古典的な分析や数値的な研究に難しかった観測データの複雑さを研究者が受け入れることを可能にするというテーマがある。
関連論文リスト
- Scientific Machine Learning Seismology [0.0]
科学機械学習(SciML)は、機械学習、特にディープラーニングと物理理論を統合し、複雑な自然現象を理解し予測する学際的な研究分野である。
PINNとニューラル演算子(NO)はSciMLの2つの一般的な方法である。
PINNの使用は、微分方程式の同時解、未決定系の推論、物理学に基づく正規化などの分野に拡大している。
論文 参考訳(メタデータ) (2024-09-27T02:27:42Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
大規模言語モデル(LLM)は、テキストやその他のデータ処理方法に革命をもたらした。
我々は,科学LLM間のクロスフィールドおよびクロスモーダル接続を明らかにすることで,研究ランドスケープのより総合的なビューを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-16T08:03:24Z) - Understanding Biology in the Age of Artificial Intelligence [4.299566787216408]
現代生命科学の研究は、生物システムをモデル化するための人工知能のアプローチにますます依存している。
機械学習(ML)モデルは、大規模で複雑なデータセットのパターンを特定するのに有用であるが、生物学におけるその広範な応用は、従来の科学的調査方法から大きく逸脱している。
ここでは,生物現象をモデル化し,科学的知識を進化させるために,MLシステムの設計と応用を導く一般的な原理を同定する。
論文 参考訳(メタデータ) (2024-03-06T23:20:34Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
大規模言語モデル(LLM)は、自然言語理解の強化において、変革的な力として現れてきた。
LLMの応用は従来の言語境界を超えて、様々な科学分野で開発された専門的な言語システムを含んでいる。
AI for Science(AI for Science)のコミュニティで急成長している分野として、科学LLMは包括的な探査を義務付けている。
論文 参考訳(メタデータ) (2024-01-26T05:33:34Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
論文 参考訳(メタデータ) (2023-07-17T12:14:14Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Machine Learning Force Fields [54.48599172620472]
機械学習(ML)は、計算化学の多くの進歩を可能にした。
最も有望な応用の1つは、MLベースの力場(FF)の構築である。
本稿では,ML-FFの応用と,それらから得られる化学的知見について概説する。
論文 参考訳(メタデータ) (2020-10-14T13:14:14Z) - Workflow Provenance in the Lifecycle of Scientific Machine Learning [1.6118907823528272]
我々は、科学MLのライフサイクルをサポートするために、ワークフロー技術を活用して全体像を構築する。
i)データ分析のライフサイクルと分類の特徴づけ、(ii)W3C PROVに準拠したデータ表現と参照システムアーキテクチャを用いて、この視点を構築するための設計原則、(iii)393ノードと946GPUを持つHPCクラスタを用いて、石油・ガスのケースでの評価から学んだ教訓に貢献する。
論文 参考訳(メタデータ) (2020-09-30T13:09:48Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。