論文の概要: Identity-Preserving Aging of Face Images via Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2307.08585v1
- Date: Mon, 17 Jul 2023 15:57:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 12:25:53.880585
- Title: Identity-Preserving Aging of Face Images via Latent Diffusion Models
- Title(参考訳): 潜在拡散モデルによる顔画像のアイデンティティ保存エイジング
- Authors: Sudipta Banerjee, Govind Mittal, Ameya Joshi, Chinmay Hegde, Nasir
Memon
- Abstract要約: 顔画像の老化・老化に対する遅延テキスト・ツー・イメージ拡散モデルの提案, 評価, 評価を行った。
我々のモデルは、数発の訓練で成功し、直感的なテキストプロンプトによって制御できることのメリットが加わった。
- 参考スコア(独自算出の注目度): 22.2699253042219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of automated face recognition systems is inevitably impacted
by the facial aging process. However, high quality datasets of individuals
collected over several years are typically small in scale. In this work, we
propose, train, and validate the use of latent text-to-image diffusion models
for synthetically aging and de-aging face images. Our models succeed with
few-shot training, and have the added benefit of being controllable via
intuitive textual prompting. We observe high degrees of visual realism in the
generated images while maintaining biometric fidelity measured by commonly used
metrics. We evaluate our method on two benchmark datasets (CelebA and AgeDB)
and observe significant reduction (~44%) in the False Non-Match Rate compared
to existing state-of the-art baselines.
- Abstract(参考訳): 自動顔認識システムの性能は、必然的に顔の老化過程に影響される。
しかし、数年にわたって収集された個人の高品質なデータセットは通常、規模が小さい。
本研究では,顔画像の老化とデエイジングにおける潜在テキストから画像への拡散モデルの利用を提案,訓練し,検証する。
我々のモデルは、数発の訓練で成功し、直感的なテキストプロンプトによって制御できることのメリットが加わった。
画像中の高次視覚リアリズムを観測し, 一般的な測定値で測定した生体適合性を維持した。
提案手法を2つのベンチマークデータセット(CelebA, AgeDB)で評価し, False Non-Match Rate において既存の最先端のベースラインと比較して有意な低下(約44%)を観測した。
関連論文リスト
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
ブラインド顔復元法は、教師付き学習による大規模合成データセットの訓練において、顕著な性能を示した。
これらのデータセットは、手作りの画像分解パイプラインで、低品質の顔イメージをシミュレートすることによって生成されることが多い。
本稿では, 入力画像の集合のみを用いて, 劣化が不明で, 真理の目標がない場合にのみ, 復元モデルの微調整を行うことにより, この問題に対処する。
我々の最良のモデルは、合成と実世界の両方のデータセットの最先端の結果も達成します。
論文 参考訳(メタデータ) (2024-10-06T20:38:14Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
大規模な顔データセットは、主にWebベースのイメージから作成され、明示的なユーザの同意が欠如している。
本稿では,合成顔データを用いて効果的な顔認識モデルの訓練を行う方法について検討する。
論文 参考訳(メタデータ) (2024-04-04T15:45:25Z) - Effective Adapter for Face Recognition in the Wild [72.75516495170199]
私たちは、画像が低品質で現実世界の歪みに悩まされる、野生の顔認識の課題に取り組みます。
従来のアプローチでは、劣化した画像や、顔の復元技術を使って強化された画像を直接訓練するが、効果がないことが証明された。
高品質な顔データセットで訓練された既存の顔認識モデルを強化するための効果的なアダプタを提案する。
論文 参考訳(メタデータ) (2023-12-04T08:55:46Z) - Will your Doorbell Camera still recognize you as you grow old [1.6536018920603175]
本研究は,顔認証法の性能に及ぼす年齢と加齢の影響について検討する。
様々な年齢効果を持つ高品質な顔画像の集合を拡大するために、フォトリアリスティックな年齢変換法が用いられている。
これらの合成老化データが高速深層学習に基づく顔認識モデルに与える影響を定量化する。
論文 参考訳(メタデータ) (2023-08-08T12:43:26Z) - MiVOLO: Multi-input Transformer for Age and Gender Estimation [0.0]
最新の視覚変換器を用いた年齢・性別推定手法であるMiVOLOを提案する。
本手法は両タスクを統合された二重入力/出力モデルに統合する。
モデルの年齢認識性能を人間レベルの精度と比較し、ほとんどの年齢範囲で人間よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-10T14:58:10Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
年齢推定に顔のセマンティクスを明示的に組み込む手法を提案する。
我々は,顔解析に基づくネットワークを設計し,異なるスケールで意味情報を学習する。
提案手法は,既存の年齢推定手法を常に上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-21T14:31:32Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。