論文の概要: Autoregressive Diffusion Model for Graph Generation
- arxiv url: http://arxiv.org/abs/2307.08849v1
- Date: Mon, 17 Jul 2023 21:21:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 17:09:15.700481
- Title: Autoregressive Diffusion Model for Graph Generation
- Title(参考訳): グラフ生成のための自己回帰拡散モデル
- Authors: Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya
Prakash, Chao Zhang
- Abstract要約: 本稿では,グラフ生成のための自己回帰拡散モデルを提案する。
既存の方法とは異なり、離散グラフ空間内で直接動作するノード吸収拡散プロセスを定義する。
6つの多種多様なグラフデータセットと2つの分子データセットに関する実験は、我々のモデルが過去の最先端技術よりも優れた、あるいは同等な生成性能を達成していることを示している。
- 参考スコア(独自算出の注目度): 12.390149720274904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-based graph generative models have recently obtained promising
results for graph generation. However, existing diffusion-based graph
generative models are mostly one-shot generative models that apply Gaussian
diffusion in the dequantized adjacency matrix space. Such a strategy can suffer
from difficulty in model training, slow sampling speed, and incapability of
incorporating constraints. We propose an \emph{autoregressive diffusion} model
for graph generation. Unlike existing methods, we define a node-absorbing
diffusion process that operates directly in the discrete graph space. For
forward diffusion, we design a \emph{diffusion ordering network}, which learns
a data-dependent node absorbing ordering from graph topology. For reverse
generation, we design a \emph{denoising network} that uses the reverse node
ordering to efficiently reconstruct the graph by predicting the node type of
the new node and its edges with previously denoised nodes at a time. Based on
the permutation invariance of graph, we show that the two networks can be
jointly trained by optimizing a simple lower bound of data likelihood. Our
experiments on six diverse generic graph datasets and two molecule datasets
show that our model achieves better or comparable generation performance with
previous state-of-the-art, and meanwhile enjoys fast generation speed.
- Abstract(参考訳): 拡散グラフ生成モデルは最近,グラフ生成の有望な結果を得た。
しかし、既存の拡散に基づくグラフ生成モデルは、主に1ショット生成モデルであり、非等化隣接行列空間においてガウス拡散を適用する。
このような戦略は、モデルトレーニングの難しさ、サンプリング速度の遅さ、制約を組み込むことができないことに悩まされる。
グラフ生成のための 'emph{autoregressive diffusion} モデルを提案する。
既存の方法とは異なり、離散グラフ空間内で直接動作するノード吸収拡散プロセスを定義する。
フォワード拡散のために、グラフトポロジーから順序を吸収するデータ依存ノードを学習する \emph{diffusion order network} を設計する。
逆生成のために,新しいノードとそのエッジのノードタイプを,それまでのノードで予測することで,逆ノード順序付けを用いてグラフを効率的に再構築するネットワーク「emph{denoising Network」を設計する。
グラフの置換不変性に基づき、単純なデータ確率の上限を最適化することで、2つのネットワークを共同で訓練できることを示す。
6つの多種多様なグラフデータセットと2つの分子データセットに関する実験により、我々のモデルは従来の最先端技術よりも優れた、あるいは同等な生成性能を示し、一方、高速な生成速度を享受している。
関連論文リスト
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
本稿では,1)グラフラプラシア行列のスペクトル分解と2)拡散過程に基づく新しいグラフ生成モデルGRASPを提案する。
具体的には、固有ベクトルと固有値のサンプリングにデノナイジングモデルを用い、グラフラプラシアン行列と隣接行列を再構成する。
我々の置換不変モデルは各ノードの固有ベクトルに連結することでノードの特徴を扱える。
論文 参考訳(メタデータ) (2024-02-29T09:26:46Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph
Generation [43.196067037856515]
グラフ生成モデルは生物学、化学、社会科学に広く応用されている。
現在の先行自己回帰モデルは、グラフの置換不変性を取り込むことができない。
置換不変グラフ生成のための連続時間生成拡散プロセスを提案する。
論文 参考訳(メタデータ) (2022-12-04T15:12:44Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGressは、分類ノードとエッジ属性を持つグラフを生成するための離散化拡散モデルである。
分子と非分子のデータセットで最先端のパフォーマンスを実現し、最大3倍の妥当性が向上する。
また、1.3Mの薬物様分子を含む大規模なGuacaMolデータセットにスケールする最初のモデルでもある。
論文 参考訳(メタデータ) (2022-09-29T12:55:03Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
本稿では,グラフ上の分布を構成するノードコピーモデルを提案する。
コピーモデルの有用性を3つのタスクで示す。
提案モデルを用いて,グラフトポロジに対する敵攻撃の効果を緩和する。
論文 参考訳(メタデータ) (2022-08-04T04:04:49Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
グラフ生成モデルはグラフ上の分布を定義する。
グラフ上の正確な結合確率とシーケンシャルプロセスのノード順序を導出する。
我々は,従来の手法のアドホックノード順序を使わずに,この境界を最大化してグラフ生成モデルを訓練する。
論文 参考訳(メタデータ) (2021-06-11T06:37:52Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。