論文の概要: Integration of Large Language Models and Federated Learning
- arxiv url: http://arxiv.org/abs/2307.08925v3
- Date: Wed, 30 Oct 2024 03:04:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:25:35.392062
- Title: Integration of Large Language Models and Federated Learning
- Title(参考訳): 大規模言語モデルの統合とフェデレーションラーニング
- Authors: Chaochao Chen, Xiaohua Feng, Yuyuan Li, Lingjuan Lyu, Jun Zhou, Xiaolin Zheng, Jianwei Yin,
- Abstract要約: 本稿では,LLMとFLの融合を3つの部分に分割する研究フレームワークを提案する。
まず,LLMの領域とFLを組み合わせた研究の現状について概説する。
次に、医療、金融、教育などの重要なシナリオにおけるLLMとFLの組み合わせの実践的応用について論じる。
- 参考スコア(独自算出の注目度): 58.9876604258949
- License:
- Abstract: As the parameter size of Large Language Models (LLMs) continues to expand, there is an urgent need to address the scarcity of high-quality data. In response, existing research has attempted to make a breakthrough by incorporating Federated Learning (FL) into LLMs. Conversely, considering the outstanding performance of LLMs in task generalization, researchers have also tried applying LLMs within FL to tackle challenges in relevant domains. The complementarity between LLMs and FL has already ignited widespread research interest. In this paper, we aim to deeply explore the integration of LLMs and FL. We propose a research framework, dividing the fusion of LLMs and FL into three parts: the combination of LLM sub-technologies with FL, the integration of FL sub-technologies with LLMs, and the overall merger of LLMs and FL. We first provide a comprehensive review of the current state of research in the domain of LLMs combined with FL, including their typical applications, integration advantages, challenges faced, and future directions for resolution. Subsequently, we discuss the practical applications of the combination of LLMs and FL in critical scenarios such as healthcare, finance, and education, and provide new perspectives and insights into future research directions for LLMs and FL.
- Abstract(参考訳): LLM(Large Language Models)のパラメータサイズは拡大を続けており、高品質なデータの不足に対処する必要がある。
これに対し、既存の研究は、フェデレートラーニング(FL)をLLMに組み込むことで、画期的な成果を上げようとしている。
逆に、タスク一般化におけるLLMの卓越した性能を考えると、研究者は関連する領域の課題に取り組むためにFL内でLLMを適用しようと試みている。
LLMとFLの相補性はすでに広く研究されている。
本稿では LLM と FL の統合について深く検討する。
本稿では,LLM と FL の融合を,LLM と FL のサブ技術の組み合わせ,FL と LLM のサブ技術の統合,LLM と FL の総合的な統合の3つの部分に分割する研究枠組みを提案する。
まず LLM の領域における研究状況と FL との組み合わせについて,その典型的な応用,統合上の優位性,直面する課題,解決に向けた今後の方向性などについて概説する。
その後、医療、金融、教育などの重要なシナリオにおけるLLMとFLの組み合わせの実践的応用について議論し、LLMとFLの今後の研究方向性について、新たな視点と洞察を提供する。
関連論文リスト
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
我々は、FTからPT LLMへのマージ技術の適用性を拡大するための先駆的な取り組みを行っている。
WeIght DisENtanglement (WIDEN) に基づくアプローチを導入し、マージ範囲を効果的に拡張する。
Qwen1.5-Chat (FT LLM with instruction-following skills) と Sailor (PT LLM with multilingual abilities) を7Bおよび14Bモデルスケールにマージする。
論文 参考訳(メタデータ) (2024-08-06T10:46:46Z) - FernUni LLM Experimental Infrastructure (FLEXI) -- Enabling Experimentation and Innovation in Higher Education Through Access to Open Large Language Models [2.190269031876989]
本稿では,Hagen の FernUniversit において,FLEXI というプロジェクト名でオープン LLM インフラストラクチャの構築状況について述べる。
本稿は,自前のLLMサーバを実行するかどうかを判断しようとするすべての人たちに対して,実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-06-27T09:46:11Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
大規模言語モデル(LLM)の能力評価にはMWP(Math Word Problems)が不可欠である
この研究は、文脈長一般化可能性(CoLeG)の探索の先駆者である。
これらの問題を解決する上で, LLMの有効性とレジリエンスを評価するために, 2つの新しい指標が提案されている。
論文 参考訳(メタデータ) (2024-05-23T17:13:50Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。