GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction
- URL: http://arxiv.org/abs/2307.08989v1
- Date: Tue, 18 Jul 2023 06:01:37 GMT
- Title: GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction
- Authors: Xinxing Yang and Genke Yang and Jian Chu
- Abstract summary: GraphCL-DTA is a graph contrastive learning framework for molecular graphs to learn drug representations.
Next, we design a new loss function that can be directly used to adjust the uniformity of drug and target representations.
The effectiveness of the above innovative elements is verified on two real datasets.
- Score: 2.523552067304274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug-target binding affinity prediction plays an important role in the early
stages of drug discovery, which can infer the strength of interactions between
new drugs and new targets. However, the performance of previous computational
models is limited by the following drawbacks. The learning of drug
representation relies only on supervised data, without taking into account the
information contained in the molecular graph itself. Moreover, most previous
studies tended to design complicated representation learning module, while
uniformity, which is used to measure representation quality, is ignored. In
this study, we propose GraphCL-DTA, a graph contrastive learning with molecular
semantics for drug-target binding affinity prediction. In GraphCL-DTA, we
design a graph contrastive learning framework for molecular graphs to learn
drug representations, so that the semantics of molecular graphs are preserved.
Through this graph contrastive framework, a more essential and effective drug
representation can be learned without additional supervised data. Next, we
design a new loss function that can be directly used to smoothly adjust the
uniformity of drug and target representations. By directly optimizing the
uniformity of representations, the representation quality of drugs and targets
can be improved. The effectiveness of the above innovative elements is verified
on two real datasets, KIBA and Davis. The excellent performance of GraphCL-DTA
on the above datasets suggests its superiority to the state-of-the-art model.
Related papers
- HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction [15.005837084219355]
We propose a hierarchical graph representation learning-based DTI prediction method (HiGraphDTI)
Specifically, HiGraphDTI learns hierarchical drug representations from triple-level molecular graphs to thoroughly exploit chemical information embedded in atoms, motifs, and molecules.
An attentional feature fusion module incorporates information from different receptive fields to extract expressive target features.
arXiv Detail & Related papers (2024-04-16T13:35:24Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule
Zero-Shot Learning [71.89623260998934]
This study investigates the feasibility of employing natural language instructions to accomplish molecule-related tasks in a zero-shot setting.
Existing molecule-text models perform poorly in this setting due to inadequate treatment of instructions and limited capacity for graphs.
We propose GIMLET, which unifies language models for both graph and text data.
arXiv Detail & Related papers (2023-05-28T18:27:59Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
We develop a methodology to predict drug side-effects using Graph Neural Networks.
We build a dataset from freely accessible and well established data sources.
The results show that our method has an improved classification capability, under many parameters and metrics.
arXiv Detail & Related papers (2022-11-30T10:12:41Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Attention-wise masked graph contrastive learning for predicting
molecular property [15.387677968070912]
We proposed a self-supervised representation learning framework for large-scale unlabeled molecules.
We developed a novel molecular graph augmentation strategy, referred to as attention-wise graph mask.
Our model can capture important molecular structure and higher-order semantic information.
arXiv Detail & Related papers (2022-05-02T00:28:02Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
We propose a novel hierarchical graph representation learning model for the drug-target binding affinity prediction, namely HGRL-DTA.
In this paper, we adopt a message broadcasting mechanism to integrate the hierarchical representations learned from the global-level affinity graph and the local-level molecular graph. Besides, we design a similarity-based embedding map to solve the cold start problem of inferring representations for unseen drugs and targets.
arXiv Detail & Related papers (2022-03-22T04:50:16Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.