Frequency-mixed Single-source Domain Generalization for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2307.09005v1
- Date: Tue, 18 Jul 2023 06:44:45 GMT
- Title: Frequency-mixed Single-source Domain Generalization for Medical Image
Segmentation
- Authors: Heng Li, Haojin Li, Wei Zhao, Huazhu Fu, Xiuyun Su, Yan Hu, Jiang Liu
- Abstract summary: The scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models.
We propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG)
Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm.
- Score: 29.566769388674473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The annotation scarcity of medical image segmentation poses challenges in
collecting sufficient training data for deep learning models. Specifically,
models trained on limited data may not generalize well to other unseen data
domains, resulting in a domain shift issue. Consequently, domain generalization
(DG) is developed to boost the performance of segmentation models on unseen
domains. However, the DG setup requires multiple source domains, which impedes
the efficient deployment of segmentation algorithms in clinical scenarios. To
address this challenge and improve the segmentation model's generalizability,
we propose a novel approach called the Frequency-mixed Single-source Domain
Generalization method (FreeSDG). By analyzing the frequency's effect on domain
discrepancy, FreeSDG leverages a mixed frequency spectrum to augment the
single-source domain. Additionally, self-supervision is constructed in the
domain augmentation to learn robust context-aware representations for the
segmentation task. Experimental results on five datasets of three modalities
demonstrate the effectiveness of the proposed algorithm. FreeSDG outperforms
state-of-the-art methods and significantly improves the segmentation model's
generalizability. Therefore, FreeSDG provides a promising solution for
enhancing the generalization of medical image segmentation models, especially
when annotated data is scarce. The code is available at
https://github.com/liamheng/Non-IID_Medical_Image_Segmentation.
Related papers
- Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - Medical Image Segmentation via Single-Source Domain Generalization with Random Amplitude Spectrum Synthesis [13.794335166617063]
The field of medical image segmentation is challenged by domain generalization (DG) due to domain shifts in clinical datasets.
Traditional single-source domain generalization methods rely on stacking data augmentation techniques to minimize domain discrepancies.
We propose Random Amplitude Spectrum Synthesis (RASS) as a training augmentation for medical images.
arXiv Detail & Related papers (2024-09-07T08:58:04Z) - RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation [41.50001361938865]
Deep learning models often encounter challenges in making accurate inferences when there are domain shifts between the source and target data.
We propose a Random frequency filtering enabled Single-source Domain Generalization algorithm (RaffeSDG)
RaffeSDG promises robust out-of-domain inference with segmentation models trained on a single-source domain.
arXiv Detail & Related papers (2024-05-02T12:13:00Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
We propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains.
We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - Generalized Semantic Segmentation by Self-Supervised Source Domain
Projection and Multi-Level Contrastive Learning [79.0660895390689]
Deep networks trained on the source domain show degraded performance when tested on unseen target domain data.
We propose a Domain Projection and Contrastive Learning (DPCL) approach for generalized semantic segmentation.
arXiv Detail & Related papers (2023-03-03T13:07:14Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
We propose a data manipulation based domain generalization method, called Automated Augmentation for Domain Generalization (AADG)
Our AADG framework can effectively sample data augmentation policies that generate novel domains.
Our proposed AADG exhibits state-of-the-art generalization performance and outperforms existing approaches.
arXiv Detail & Related papers (2022-07-27T02:26:01Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
We propose Contrastive Disentangle Domain (CDD) network for generalizable medical image segmentation.
We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor.
We then propose a domain augmentation strategy that can randomly generate new domains for model generalization training.
arXiv Detail & Related papers (2022-05-13T10:32:41Z) - Semantic-Aware Domain Generalized Segmentation [67.49163582961877]
Deep models trained on source domain lack generalization when evaluated on unseen target domains with different data distributions.
We propose a framework including two novel modules: Semantic-Aware Normalization (SAN) and Semantic-Aware Whitening (SAW)
Our approach shows significant improvements over existing state-of-the-art on various backbone networks.
arXiv Detail & Related papers (2022-04-02T09:09:59Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.