LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation
- URL: http://arxiv.org/abs/2505.19659v1
- Date: Mon, 26 May 2025 08:18:32 GMT
- Title: LangDAug: Langevin Data Augmentation for Multi-Source Domain Generalization in Medical Image Segmentation
- Authors: Piyush Tiwary, Kinjawl Bhattacharyya, Prathosh A. P,
- Abstract summary: Domain Generalization (DG) methods overcome this either through representation learning or data augmentation (DAug)<n>We propose LangDAug, a novel $textbf$evin $textbfD$ata $textbfAug$mentation for multi-source domain generalization in 2D medical image segmentation.<n>We show that LangDAug outperforms state-of-the-art domain generalization methods and effectively complements existing domain-randomization approaches.
- Score: 5.9862846364925115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation models often struggle to generalize across different domains due to various reasons. Domain Generalization (DG) methods overcome this either through representation learning or data augmentation (DAug). While representation learning methods seek domain-invariant features, they often rely on ad-hoc techniques and lack formal guarantees. DAug methods, which enrich model representations through synthetic samples, have shown comparable or superior performance to representation learning approaches. We propose LangDAug, a novel $\textbf{Lang}$evin $\textbf{D}$ata $\textbf{Aug}$mentation for multi-source domain generalization in 2D medical image segmentation. LangDAug leverages Energy-Based Models (EBMs) trained via contrastive divergence to traverse between source domains, generating intermediate samples through Langevin dynamics. Theoretical analysis shows that LangDAug induces a regularization effect, and for GLMs, it upper-bounds the Rademacher complexity by the intrinsic dimensionality of the data manifold. Through extensive experiments on Fundus segmentation and 2D MRI prostate segmentation benchmarks, we show that LangDAug outperforms state-of-the-art domain generalization methods and effectively complements existing domain-randomization approaches. The codebase for our method is available at https://github.com/backpropagator/LangDAug.
Related papers
- Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation [17.49123106322442]
Test-time adaptation (TTA) adjusts a learned model using unlabeled test data.<n>We incorporate morphological information and propose a framework based on multi-graph matching.<n>Our method outperforms other state-of-the-art approaches on two medical image segmentation benchmarks.
arXiv Detail & Related papers (2025-03-17T10:11:11Z) - Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
We propose a new benchmark Hybrid Domain Generalization (HDG) and a novel metric $H2$-CV, which construct various splits to assess the robustness of algorithms.
Our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when confronting data scarcity.
arXiv Detail & Related papers (2024-04-13T13:41:13Z) - DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation [43.842694540544194]
Applying pretrained medical deep learning segmentation models on out-of-domain images often yields predictions of insufficient quality.<n>In this study, we propose to use a powerful generalizing descriptor along with augmentation to enable domain-generalized pretraining and test-time adaptation.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control [68.14798033899955]
Large, pretrained latent diffusion models (LDMs) have demonstrated an extraordinary ability to generate creative content.
However, are they usable as large-scale data generators, e.g., to improve tasks in the perception stack, like semantic segmentation?
We investigate this question in the context of autonomous driving, and answer it with a resounding "yes"
arXiv Detail & Related papers (2023-12-05T18:34:12Z) - Frequency-mixed Single-source Domain Generalization for Medical Image
Segmentation [29.566769388674473]
The scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models.
We propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG)
Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm.
arXiv Detail & Related papers (2023-07-18T06:44:45Z) - Treasure in Distribution: A Domain Randomization based Multi-Source
Domain Generalization for 2D Medical Image Segmentation [20.97329150274455]
We propose a multi-source domain generalization method called Treasure in Distribution (TriD)
TriD constructs an unprecedented search space to obtain the model with strong robustness by randomly sampling from a uniform distribution.
Experiments on two medical segmentation tasks demonstrate that our TriD achieves superior generalization performance on unseen target-domain data.
arXiv Detail & Related papers (2023-05-31T15:33:57Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
Unsupervised domain adaptation (UDA) and domain generalization (DG) enable machine learning models trained on a source domain to perform well on unlabeled or unseen target domains.
We propose HRDA, a multi-resolution framework for UDA&DG, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention.
arXiv Detail & Related papers (2023-04-26T15:18:45Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
We propose a data manipulation based domain generalization method, called Automated Augmentation for Domain Generalization (AADG)
Our AADG framework can effectively sample data augmentation policies that generate novel domains.
Our proposed AADG exhibits state-of-the-art generalization performance and outperforms existing approaches.
arXiv Detail & Related papers (2022-07-27T02:26:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Learning to Generate Novel Domains for Domain Generalization [115.21519842245752]
This paper focuses on the task of learning from multiple source domains a model that generalizes well to unseen domains.
We employ a data generator to synthesize data from pseudo-novel domains to augment the source domains.
Our method, L2A-OT, outperforms current state-of-the-art DG methods on four benchmark datasets.
arXiv Detail & Related papers (2020-07-07T09:34:17Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.