DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation
- URL: http://arxiv.org/abs/2312.06275v3
- Date: Wed, 10 Apr 2024 11:49:05 GMT
- Title: DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation
- Authors: Christian Weihsbach, Christian N. Kruse, Alexander Bigalke, Mattias P. Heinrich,
- Abstract summary: We propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains.
We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy.
- Score: 43.842694540544194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Applying pre-trained medical segmentation models on out-of-domain images often yields predictions of insufficient quality. Several strategies have been proposed to maintain model performance, such as finetuning or unsupervised- and source-free domain adaptation. These strategies set restrictive requirements for data availability. In this study, we propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains. Domain-generalized pre-training on source data is used to obtain the best initial performance in the target domain. We introduce the MIND descriptor previously used in image registration tasks as a further technique to achieve generalization and present superior performance for small-scale datasets compared to existing approaches. At test-time, high-quality segmentation for every single unseen scan is ensured by optimizing the model weights for consistency given different image augmentations. That way, our method enables separate use of source and target data and thus removes current data availability barriers. Moreover, the presented method is highly modular as it does not require specific model architectures or prior knowledge of involved domains and labels. We demonstrate this by integrating it into the nnUNet, which is currently the most popular and accurate framework for medical image segmentation. We employ multiple datasets covering abdominal, cardiac, and lumbar spine scans and compose several out-of-domain scenarios in this study. We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy in all of the aforementioned scenarios. Open-source code can be found here: https://github.com/multimodallearning/DG-TTA
Related papers
- Hybrid Dense-UNet201 Optimization for Pap Smear Image Segmentation Using Spider Monkey Optimization [0.0]
This study proposes a hybrid Dense-UNet201 optimization approach that integrates a pretrained DenseNet201 as the encoder for the U-Net architecture.
Dense-UNet201 achieved a segmentation accuracy of 96.16%, an IoU of 91.63%, and a Dice coefficient score of 95.63%.
arXiv Detail & Related papers (2025-04-17T10:14:05Z) - Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
We study the multi-source Domain Generalization of text classification.
We propose a framework to use multiple seen domains to train a model that can achieve high accuracy in an unseen domain.
arXiv Detail & Related papers (2024-09-20T07:46:21Z) - Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
We present first analysis of state-of-the-art semantic segmentation models when faced with geometric out-of-distribution data.
We propose an augmentation technique called "Organ Transplantation" to enhance generalizability.
Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2024-08-27T19:13:15Z) - GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
Existing face forgery detection usually follows the paradigm of training models in a single domain.
In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets.
arXiv Detail & Related papers (2024-06-28T17:42:08Z) - Better Generalization of White Matter Tract Segmentation to Arbitrary
Datasets with Scaled Residual Bootstrap [1.30536490219656]
White matter (WM) tract segmentation is a crucial step for brain connectivity studies.
We propose a WM tract segmentation approach that improves the generalization with scaled residual bootstrap.
arXiv Detail & Related papers (2023-09-25T09:31:34Z) - Attention and Pooling based Sigmoid Colon Segmentation in 3D CT images [11.861208424384046]
The sigmoid colon is a crucial aspect of treating diverticulitis.
This research presents a novel deep learning architecture for segmenting the sigmoid colon from Computed Tomography (CT) images.
arXiv Detail & Related papers (2023-09-25T04:52:46Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
We present the first analysis of state-of-the-art semantic segmentation networks in the presence of geometric out-of-distribution (OOD) data.
We also address generalizability with a dedicated augmentation technique termed "Organ Transplantation"
Our scheme improves on the SOA DSC by up to 67 % (RGB) and 90 % (HSI) and renders performance on par with in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2023-03-20T09:50:07Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
We propose a data manipulation based domain generalization method, called Automated Augmentation for Domain Generalization (AADG)
Our AADG framework can effectively sample data augmentation policies that generate novel domains.
Our proposed AADG exhibits state-of-the-art generalization performance and outperforms existing approaches.
arXiv Detail & Related papers (2022-07-27T02:26:01Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Semi-supervised Meta-learning with Disentanglement for
Domain-generalised Medical Image Segmentation [15.351113774542839]
Generalising models to new data from new centres (termed here domains) remains a challenge.
We propose a novel semi-supervised meta-learning framework with disentanglement.
We show that the proposed method is robust on different segmentation tasks and achieves state-of-the-art generalisation performance on two public benchmarks.
arXiv Detail & Related papers (2021-06-24T19:50:07Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z) - Domain Generalizer: A Few-shot Meta Learning Framework for Domain
Generalization in Medical Imaging [23.414905586808874]
We adapt a domain generalization method based on a model-agnostic meta-learning framework to biomedical imaging.
The method learns a domain-agnostic feature representation to improve generalization of models to the unseen test distribution.
Our results suggest that the method could help generalize models across different medical centers, image acquisition protocols, anatomies, different regions in a given scan, healthy and diseased populations across varied imaging modalities.
arXiv Detail & Related papers (2020-08-18T03:35:56Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.