Towards a Neural Era in Dialogue Management for Collaboration: A
Literature Survey
- URL: http://arxiv.org/abs/2307.09021v1
- Date: Tue, 18 Jul 2023 07:20:43 GMT
- Title: Towards a Neural Era in Dialogue Management for Collaboration: A
Literature Survey
- Authors: Amogh Mannekote
- Abstract summary: Survey begins by reviewing the evolution of dialogue management paradigms in collaborative dialogue systems.
It then shifts focus to contemporary data-driven dialogue management techniques.
Paper proceeds to analyze a selected set of recent works that apply neural approaches to collaborative dialogue management.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue-based human-AI collaboration can revolutionize collaborative
problem-solving, creative exploration, and social support. To realize this
goal, the development of automated agents proficient in skills such as
negotiating, following instructions, establishing common ground, and
progressing shared tasks is essential. This survey begins by reviewing the
evolution of dialogue management paradigms in collaborative dialogue systems,
from traditional handcrafted and information-state based methods to AI
planning-inspired approaches. It then shifts focus to contemporary data-driven
dialogue management techniques, which seek to transfer deep learning successes
from form-filling and open-domain settings to collaborative contexts. The paper
proceeds to analyze a selected set of recent works that apply neural approaches
to collaborative dialogue management, spotlighting prevailing trends in the
field. This survey hopes to provide foundational background for future
advancements in collaborative dialogue management, particularly as the dialogue
systems community continues to embrace the potential of large language models.
Related papers
- Unsupervised Extraction of Dialogue Policies from Conversations [3.102576158218633]
We show how Large Language Models can be instrumental in extracting dialogue policies from datasets.
We then propose a novel method for generating dialogue policies utilizing a controllable and interpretable graph-based methodology.
arXiv Detail & Related papers (2024-06-21T14:57:25Z) - Let's Negotiate! A Survey of Negotiation Dialogue Systems [56.01648785030208]
Negotiation is a crucial ability in human communication.
Recent interest in negotiation dialogue systems aims to create intelligent agents that can assist people in resolving conflicts or reaching agreements.
arXiv Detail & Related papers (2024-02-02T02:12:46Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
This study provides a comprehensive overview of the primary characteristics of a dialogue agent, their corresponding open-domain datasets, and the methods used to benchmark these datasets.
We propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them.
arXiv Detail & Related papers (2023-07-14T10:05:47Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
We provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues.
We discuss challenges that meet the real-world application needs but require a greater research focus in the future.
arXiv Detail & Related papers (2023-05-04T11:38:49Z) - Let's Negotiate! A Survey of Negotiation Dialogue Systems [50.8766991794008]
Negotiation is one of the crucial abilities in human communication.
Goal is to empower intelligent agents with such ability to efficiently help humans resolve conflicts or reach beneficial agreements.
arXiv Detail & Related papers (2022-12-18T12:03:53Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence.
This paper reviews the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task.
In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios.
arXiv Detail & Related papers (2021-10-11T03:52:37Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
We review the previous methods from the perspective of dialogue modeling.
We discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks.
arXiv Detail & Related papers (2021-03-04T15:50:17Z) - Conversational Norms for Human-Robot Dialogues [0.32228025627337864]
This paper describes a recently initiated research project aiming at supporting development of computerised dialogue systems that handle breaches of conversational norms.
Our approach is to model dialogue and norms with co-operating distributed grammar systems (CDGSs)
arXiv Detail & Related papers (2021-03-02T13:28:18Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
Task-oriented dialog systems are attracting more and more attention in academic and industrial communities.
We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning, and (3) integrating domain knowledge into the dialog model.
arXiv Detail & Related papers (2020-03-17T01:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.