論文の概要: Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles
- arxiv url: http://arxiv.org/abs/2307.09027v1
- Date: Tue, 18 Jul 2023 07:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 15:52:11.158362
- Title: Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles
- Title(参考訳): 航空車両用オンライン自己監督型熱水セグメンテーション
- Authors: Connor Lee, Jonathan Gustafsson Frennert, Lu Gan, Matthew Anderson,
Soon-Jo Chung
- Abstract要約: 本稿では,RGB学習水分断ネットワークを目標領域の熱画像に適用するための新しい手法を提案する。
この新しい熱機能により、現在の自律飛行ロボットは、夜間に視覚ナビゲーション、バスメトリー、フロートラッキングなどのタスクを実行することができる。
- 参考スコア(独自算出の注目度): 6.3267657083758735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new method to adapt an RGB-trained water segmentation network to
target-domain aerial thermal imagery using online self-supervision by
leveraging texture and motion cues as supervisory signals. This new thermal
capability enables current autonomous aerial robots operating in near-shore
environments to perform tasks such as visual navigation, bathymetry, and flow
tracking at night. Our method overcomes the problem of scarce and
difficult-to-obtain near-shore thermal data that prevents the application of
conventional supervised and unsupervised methods. In this work, we curate the
first aerial thermal near-shore dataset, show that our approach outperforms
fully-supervised segmentation models trained on limited target-domain thermal
data, and demonstrate real-time capabilities onboard an Nvidia Jetson embedded
computing platform. Code and datasets used in this work will be available at:
https://github.com/connorlee77/uav-thermal-water-segmentation.
- Abstract(参考訳): 本稿では, テクスチャとモーションキューを監視信号として活用することにより, RGB 学習水分割ネットワークを, オンラインセルフスーパービジョンを用いて, ターゲット領域の空中熱画像に適用する新しい手法を提案する。
この新しい熱機能により、現在の自律飛行ロボットは、夜間に視覚ナビゲーション、バスメトリー、フロートラッキングなどのタスクを実行することができる。
本手法は, 従来の教師なし・教師なし法の適用を防止するため, あまり観測が難しい近日点熱データの不足を克服する。
本研究では,最初の空中熱的ニアショアデータセットをキュレートし,限られた対象領域の熱データに基づいてトレーニングされた完全教師付きセグメンテーションモデルより優れた性能を示し,Nvidia Jetson組み込みコンピューティングプラットフォーム上でリアルタイム機能を示す。
この作業で使用されるコードとデータセットは、https://github.com/connorlee77/uav-thermal-water-segmentationで利用可能である。
関連論文リスト
- Semantics from Space: Satellite-Guided Thermal Semantic Segmentation Annotation for Aerial Field Robots [8.265009823753982]
本研究では,航空機から撮影した熱画像のセマンティックセグメンテーションアノテーションを自動生成する手法を提案する。
この新しい機能は、フィールドロボットの熱的意味認識アルゴリズムを開発する際の課題を克服する。
提案手法では,低解像度衛星土地被覆データを用いた高精度なセマンティックセマンティックセマンティクスラベルを低コストで作成することができる。
論文 参考訳(メタデータ) (2024-03-21T00:59:35Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
本稿では,CycleGANに基づくディープネットワークの監視手法について述べる。
我々は,より効果的なトレーニングにつながるCycleGANのトレーニングに新たな損失を導入し,高品質な再構築を実現した。
提案手法は, 脱落, 脱落, 脱落といった様々な修復作業に効果的に適用できることを実証する。
論文 参考訳(メタデータ) (2022-04-23T01:30:47Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS) [0.5156484100374058]
熱赤外スペクトルにおける物体検出は、低照度条件と異なる気象条件においてより信頼性の高いデータソースを提供する。
本稿では,高度運転支援システム(ADAS)の7つの異なるクラスを用いたサーマルビジョンにおける最先端のオブジェクト・ビジョン・フレームワークの探索と適用について述べる。
公開データセット上のトレーニング済みネットワーク変種は、3つの異なるテストアプローチでテストデータ上で検証される。
訓練されたネットワークの有効性は、未冷却のLWIRプロトタイプ熱カメラで捉えたローカル収集された新しいテストデータで検証される。
論文 参考訳(メタデータ) (2021-09-20T21:38:55Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Robust pedestrian detection in thermal imagery using synthesized images [39.33977680993236]
熱領域における歩行者検出を2段階に分けて改善する手法を提案する。
まず、生成データ拡張アプローチを使用し、次いで、生成されたデータを用いたドメイン適応法は、RGB歩行者検出器に適応する。
我々の検出器は,最先端技術に関して,KAIST上で最高の単一モダリティ検出結果を達成する。
論文 参考訳(メタデータ) (2021-02-03T11:08:31Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
アンダーエクスポージャー地域は、安全な自動運転のための周囲の完全な認識を構築するのに不可欠である。
サーマルカメラが利用可能になったことで、他の光学センサーが解釈可能な信号を捉えていない地域を探索するための重要な代替手段となった。
本研究は,可視光画像から熱画像へ学習を伝達するためのスタイル伝達手法を用いたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。