論文の概要: Unleashing the Imagination of Text: A Novel Framework for Text-to-image
Person Retrieval via Exploring the Power of Words
- arxiv url: http://arxiv.org/abs/2307.09059v1
- Date: Tue, 18 Jul 2023 08:23:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 15:42:43.999758
- Title: Unleashing the Imagination of Text: A Novel Framework for Text-to-image
Person Retrieval via Exploring the Power of Words
- Title(参考訳): テキストの想像力を解き放つ : 単語の力の探索による人物のテキスト対画像検索のための新しい枠組み
- Authors: Delong Liu, Haiwen Li
- Abstract要約: 文中の単語のパワーを探索する新しい枠組みを提案する。
このフレームワークは、トレーニング済みのフルCLIPモデルをイメージとテキストのデュアルエンコーダとして採用している。
ハードサンプルの処理に適したクロスモーダル三重項損失を導入し,微妙な違いを識別するモデルの能力を高めた。
- 参考スコア(独自算出の注目度): 0.951828574518325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of Text-to-image person retrieval is to retrieve person images from
a large gallery that match the given textual descriptions. The main challenge
of this task lies in the significant differences in information representation
between the visual and textual modalities. The textual modality conveys
abstract and precise information through vocabulary and grammatical structures,
while the visual modality conveys concrete and intuitive information through
images. To fully leverage the expressive power of textual representations, it
is essential to accurately map abstract textual descriptions to specific
images.
To address this issue, we propose a novel framework to Unleash the
Imagination of Text (UIT) in text-to-image person retrieval, aiming to fully
explore the power of words in sentences. Specifically, the framework employs
the pre-trained full CLIP model as a dual encoder for the images and texts ,
taking advantage of prior cross-modal alignment knowledge. The Text-guided
Image Restoration auxiliary task is proposed with the aim of implicitly mapping
abstract textual entities to specific image regions, facilitating alignment
between textual and visual embeddings. Additionally, we introduce a cross-modal
triplet loss tailored for handling hard samples, enhancing the model's ability
to distinguish minor differences.
To focus the model on the key components within sentences, we propose a novel
text data augmentation technique. Our proposed methods achieve state-of-the-art
results on three popular benchmark datasets, and the source code will be made
publicly available shortly.
- Abstract(参考訳): テキスト対画像検索の目標は、与えられたテキスト記述にマッチする大きなギャラリーから人物画像を取得することである。
このタスクの主な課題は、視覚的モダリティとテキスト的モダリティの間の情報表現の顕著な違いにある。
テクストモダリティは語彙や文法構造を通して抽象的で正確な情報を伝達し、視覚モダリティは画像を通して具体的で直感的な情報を伝達する。
テキスト表現の表現力を完全に活用するには、抽象的なテキスト記述を特定の画像に正確にマッピングすることが不可欠である。
この問題に対処するために,文中の単語のパワーを十分に探求することを目的として,テキストから画像への人物検索において,UIT(Imagination of Text)を解き放つ新しい枠組みを提案する。
具体的には、事前トレーニングされた完全なCLIPモデルをイメージとテキストのデュアルエンコーダとして使用し、以前のクロスモーダルアライメントの知識を活用する。
抽象的なテキストエンティティを特定の画像領域に暗黙的にマッピングすることを目的として,テキストと視覚の埋め込みの調整を容易にするテキストガイド画像復元補助タスクを提案する。
さらに, 厳密なサンプル処理に適したクロスモーダル三重項損失を導入し, 微妙な差分を識別するモデルの能力を高めた。
そこで本研究では,文中のキー成分に着目し,新しいテキストデータ拡張手法を提案する。
提案手法は3つのベンチマークデータセットで最新の結果を得ることができ,ソースコードも間もなく公開される予定だ。
関連論文リスト
- Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning [13.357749288588039]
以前の作業では、教師なし設定下でのテキスト情報のみに依存して、画像キャプションのためのCLIPのクロスモーダルアソシエーション機能を活用していた。
本稿では,合成画像とテキストのペアを組み込むことにより,これらの問題に対処する新しい手法を提案する。
テキストデータに対応する画像を得るために、事前訓練されたテキスト・ツー・イメージモデルが配置され、CLIP埋め込み空間の実際の画像に対して、生成された画像の擬似特徴を最適化する。
論文 参考訳(メタデータ) (2023-12-14T12:39:29Z) - Efficient Token-Guided Image-Text Retrieval with Consistent Multimodal
Contrastive Training [33.78990448307792]
画像テキスト検索は、視覚と言語間の意味的関係を理解するための中心的な問題である。
以前の作品では、全体像とテキストの粗い粒度の表現を単に学習するか、画像領域またはピクセルとテキストワードの対応を精巧に確立する。
本研究では、粗い表現学習ときめ細かい表現学習を統一した枠組みに組み合わせて、新しい視点から画像テキストの検索を行う。
論文 参考訳(メタデータ) (2023-06-15T00:19:13Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - Image-Specific Information Suppression and Implicit Local Alignment for
Text-based Person Search [61.24539128142504]
テキストベースの人物検索(TBPS)は,問合せテキストが与えられた画像ギャラリーから同一の身元で歩行者画像を検索することを目的とした課題である。
既存の手法の多くは、モダリティ間の微粒な対応をモデル化するために、明示的に生成された局所的な部分に依存している。
TBPSのためのマルチレベルアライメントネットワーク(MANet)を提案する。
論文 参考訳(メタデータ) (2022-08-30T16:14:18Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
CIR(Content-Based Image Retrieval)は,サンプル画像と補完テキストの合成を同時に解釈することで,対象画像の検索を目的とする。
本稿では,新しいアンダーラインtextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) とHybrid Counterfactual Training frameworkを用いてこの問題に取り組む。
論文 参考訳(メタデータ) (2022-07-09T07:14:44Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
本稿では,シーンテキストを効果的に表現できる弱教師付き事前学習手法を提案する。
本ネットワークは,画像エンコーダと文字認識型テキストエンコーダから構成され,視覚的特徴とテキスト的特徴を抽出する。
実験により、事前訓練されたモデルは、重みを他のテキスト検出やスポッティングネットワークに転送しながら、Fスコアを+2.5%、+4.8%改善することが示された。
論文 参考訳(メタデータ) (2022-03-08T08:10:45Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Text-based Person Search in Full Images via Semantic-Driven Proposal
Generation [42.25611020956918]
本稿では,歩行者検出,識別,視覚意味的特徴埋め込みタスクを協調的に最適化するエンドツーエンド学習フレームワークを提案する。
クエリテキストを最大限に活用するために、セマンティック機能を活用して、リージョン提案ネットワークにテキスト記述された提案にもっと注意を払うように指示する。
論文 参考訳(メタデータ) (2021-09-27T11:42:40Z) - Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image
Classification and Retrieval [8.317191999275536]
本稿では,視覚的・テキスト的手がかりの形でマルチモーダルコンテンツを活用することで,微細な画像分類と検索の課題に取り組むことに焦点を当てる。
画像中の有意なオブジェクトとテキスト間の共通意味空間を学習することにより、マルチモーダル推論を行い、関係強化された特徴を得るためにグラフ畳み込みネットワークを用いる。
論文 参考訳(メタデータ) (2020-09-21T12:31:42Z) - DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [80.54273334640285]
本稿では,異なる生成装置間の絡み合わずに高解像度画像を直接合成する,新しい1段階のテキスト・ツー・イメージバックボーンを提案する。
また,Matching-Aware Gradient Penalty と One-Way Output を組み合わせた新たなターゲット認識識別器を提案する。
現在の最先端手法と比較して,提案するDF-GANはよりシンプルだが,現実的およびテキストマッチング画像の合成には効率的である。
論文 参考訳(メタデータ) (2020-08-13T12:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。